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Abstract 
Cooperation between two players often requires exactly one to take the available action, 
while the other acquiesces. If the decisions whether to pursue the action are made 
simultaneously, then neither or both may acquiesce leading to an inefficient outcome. 
However, inefficiency may be avoided if players move sequentially. We test 
experimentally whether two-stage versions of this entry-exit game enhance cooperation. 
In one version, players may wait in the first stage to see what their paired player did and 
then coordinate in the second stage. In another version, sequential decision-making is 
imposed by assigning one player to move in stage one and the other player in stage two. 
Although there are fewer cooperative decisions in the two-stage treatments, we show that 
subjects coordinate better on efficient cooperation and on avoiding both acquiescing. 
Consequently they achieve higher profits. Yet, the least cooperative pairs do worse in the 
two-stage games than their single-stage counterparts. They use the second stage not to 
facilitate coordination but to disguise their uncooperative play or to punish their 
opponents. 
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1. Introduction 
 
Consider the following two-player game played repeatedly: each player privately receives 

a randomly drawn integer between 1 and 5 inclusive, each with equal probability. Each 

player then decides between one of two actions: enter or exit. By exiting a player receives 

zero. By entering, he receives his number if his opponent exits and one-third of his 

number if his opponent also enters. Thus, entry is the dominant strategy. By contrast, the 

socially optimal outcome involves the player with the higher integer entering, while the 

low-integer player exits. All other outcomes involve some measure of inefficiency with 

both players exiting (double exit) being the most inefficient. Although both entering 

(double entry) is the most egregious form of inefficiency, inefficient cooperation whereby 

the low-integer player enters and the high-integer player exits yields lower payoffs for 

some pairs of integers.   

In this paper, we ask whether converting this single-stage game to a two-stage game 

reduces inefficiency and thereby increases players’ payoffs. There are at least two natural 

ways in which players may make their entry-exit decisions over time rather than at the 

same instant in time. First, instead of entering or exiting in the first stage, a player may 

choose to wait; namely, he postpones his decision until the second stage after observing 

his opponent’s first-stage decision. Second, there may be an intrinsic ordering of moves. 

In particular, one player, the first mover, may be required to choose between entry and 

exit in stage 1, while the second mover observes the first mover’s decision and decides in 

stage 2 whether to enter or exit. We explore experimentally whether these two-stage 

games permit more efficient cooperation than their one-stage counterpart in repeated 

games over 60 rounds with fixed pairings.    

The one-stage game was first introduced in Kaplan and Ruffle (2012).1 The authors 

noted the similarity between this game and numerous real-world cooperation dilemmas. 

For example, bidders in an auction can actively compete with one another. In so doing, 

each reduces the other’s expected surplus. Or bidders with sufficiently a low value for the 

good being auctioned can elect not to participate. Alternatively, consider two fast-food 
                                                 
1 In that paper, the authors explored several one-stage variations of the above game with the goal of 
determining whether cooperative behavior takes the form of cutoff strategies (enter on high integers, exit 
on low ones) or alternating (players take turns entering and exiting).  
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chains that each contemplates opening a franchise in a small town. They may possess 

different expected private values of being the local monopolist that stem from different 

expected costs or demand for its products. If these two chains wish to collude implicitly, 

then the chain with a low value would stay out, under the presumption that the favor will 

be returned in the future. Also, individuals may choose not to enter contests or 

competitions if their value for the prize or probability of winning is sufficiently low and 

they care about other more deserving or more capable participants. Junior employees 

backing down from an internal promotion contest is a common occurrence. Finally, cab 

drivers, bicycle messengers, golf caddies, waitstaff, sky caps and vendors in a 

marketplace often face the decision of whether to compete for a customer or acquiesce, 

with the consequences of their decisions similar to our game’s payoff structure.  

Notice that none of the above-mentioned dilemmas is inherently a simultaneous-

move game. For example, a bidder in an English auction might hesitate before calling out 

a bid to gauge whether other auction participants intend to bid. A firm may postpone the 

decision whether to enter a market to determine whether a rival firm values the market 

more as indicated by its swift entry. A cab driver not in the immediate vicinity of the fare 

may choose to wait to see if other cabbies respond to the dispatcher’s call. In other 

examples the order of moves may be exogenously given. One bidder may be larger than 

the others. A chain store may be the market leader. A job, promotion or dating 

opportunity may be offered first to one candidate who can accept, or decline because he 

recognizes that the next candidate in line is better suited or more eager. 

As suggested by all of these examples, the possibility that players commit at different 

times to their entry-exit decisions can facilitate a more efficient outcome according to 

which the player with the higher value for the action pursues it, while the lower-value 

player acquiesces. To illustrate, if a firm always enters for a certain range of high values, 

then the possibility of waiting permits the firm to refine its strategy to enter on only a 

subset of this range and wait otherwise. By waiting and subsequently not entering 

whenever the other enters, double entry is avoided and a higher social surplus attained.2 

                                                 
2 Consider for illustrative purposes the following simplified game parameterization: the set of values is 1, 2 
and 3, each with an equal chance. If firms enter on a 2 or 3, then double entry occurs 4/9 of the time, no 
entry 1/9 of the time and single entry the remaining 4/9. By switching to entry on 3 and waiting on 2, 
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Similarly, if there exists a natural sequential ordering to the firms’ moves, then the 

second mover can enter whenever the first mover stays out and exit whenever the first 

mover enters, thereby completely avoiding double entry and double exit. 

 We evaluate whether the addition of a second stage improves outcomes.3 Similar to 

the above illustrations, we include one experimental treatment in which players may 

choose to wait until stage two before committing to entry or exit. We refer to this as the 

Wait treatment. In the other two-stage treatment, each player is randomly assigned for all 

rounds of play to the role of choosing between enter and exit in stage 1 (Player 1) or 

choosing between entry and exit in stage 2 (Player 2). We refer to this sequential-move 

treatment as Seq. Play in Wait and Seq is compared to that in our baseline treatment 

(referred to as Now) which consists of single-stage game wherein players decide 

simultaneously whether to enter or exit. The payoff structure is identical in all three 

treatments. Payoffs are determined solely on basis of players’ ultimate decisions whether 

to enter or exit. 

Contrary to our expectations, we observe more frequent entry in the two-stage 

games, Wait and Seq, than in Now. Notwithstanding, play in the two-stage games is 

characterized by more efficient pairwise cooperation and by fewer instances of double 

exit. As a result, average profits are higher in the two-stage games than in their one-stage 

counterpart. Yet, average profits mask considerable payoff variance in the two-stage 

games compared to the relatively narrow range of payoffs realized by subjects in Now. 

Cooperative pairs in the two-stage games earn more than is feasible in the single-stage 

game. At the same time, the lowest-earning pairs originate predominantly from the two-

stage treatments in which waiting and the second stage are used primarily to enter 

regardless of subjects’ values or their opponents’ first-stage decision. Thus, while waiting 

and a second stage enhance outcomes in the hands of cooperative subjects, our 

                                                                                                                                                 
double entry occurs only 2/9 of the time (1/9 in the first stage when both have 3s and another 1/9 in the 
second stage when both have 2s). Single entry increases to 2/3 of the time with no entry still at 1/9.  
3A different approach to reducing entry and improving cooperation would be to impose a limit on the total 
number of entries permitted by each player in the repeated game. In a similar vein, Engelmann and Grimm 
(2012) examine a two-player voting game where optimal cooperation requires one to vote for their 
preferred option only when one’s private value is high. Interestingly, only when an exogenous budget 
constraint (in terms of number of votes) is imposed do they observe "cooperation" rather than players 
pursuing the dominant strategy of exaggerating their values and always voting for their preferred option.  
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experiments also illustrate the potential for these features to backfire and lead to worse 

outcomes.  

Our paper contributes to the literature on the endogenous timing of moves. The 

addition of the wait option renders endogenous the timing of players’ decisions to enter 

or exit. In Cournot duopolies, when the timing of quantity decisions is endogenous, 

players may postpone their decisions in order to make strategic use of other players’ 

actions (see, for example, Hamilton and Slutsky 1990). Likewise, when publicly 

observable decisions reveal agents’ private information, the strategic delay of decisions 

may be an equilibrium (see Chamley and Gale 1994; Gul and Lundholm 1995). Attempts 

to observe strategic delay in the laboratory have met with mixed results (Huck, Muller, 

and Normann 2001, 2002; Potters, Sefton and Vesterlund 2004; Ziegelmeyer et al. 2005; 

Fonseca and Normann 2008). In our environment, we analyze whether the waiting option 

is indeed exploited and to what end.                            

In the next section, we lay out the experimental design and procedures. In section 3, 

we provide a theoretical framework for our experiments and some testable hypotheses. 

For each of the experimental treatments, section 4 presents the results, including the 

degree of cooperation, the pairwise coordination of outcomes, subjects’ profits, and an 

individual strategy analysis. Section 4 wraps up with some implications of our findings 

for market design. 

 

2. Experimental Design and Procedures  
2.1 Treatments  
The experiments were conducted in z-Tree (Fischbacher 2007) with fixed pairs for 60 

rounds preceded by five practice rounds in different pairings. Each subject in the pair 

privately receives an independently and randomly drawn integer between 1 and 5 in each 

round. In a between-subjects design, we conducted three treatments that differ in the 

number of stages and the timing of players’ moves. The control treatment Now consists 

of a single stage in which players simultaneously decide whether to enter or exit. The 

decision to exit yields 0, whereas entry yields the value of the number if the partner exits 

and 1/3 of the value of the number if the partner also enters. After each round, subjects 
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observe their partner’s decision and value. The other two treatments, Wait and Seq, each 

consist of two stages.  

 In Wait each player decides simultaneously in stage 1 whether to enter, exit or wait. 

Waiting in stage 1 allows the subject to observe his partner’s stage-one decision (but not 

value) before deciding in stage 2 whether to enter or exit. Waiting is costless; the payoffs 

depend only on the players’ final decisions to enter or exit. Thus, the payoff structure is 

identical to that in Now.  

In Seq the sequential ordering of moves is imposed. One player is randomly assigned 

to the role of choosing between enter and exit in stage 1 (Player 1). The other player 

(Player 2) observes Player 1’s stage-one decision (but not value) and decides in stage 2 

whether to enter or exit. Again, the payoff structure in Seq is identical to that of the other 

two treatments. 

    

2.2 Experimental Procedures  
All subjects were handed the instructions (see Appendix B). After reading them by 

themselves, the experimenter read them aloud. To ensure that the game was fully 

understood, subjects answered a series of test questions about the game. Participation in 

the experiment was contingent upon correctly answering all of the questions, which 

everyone did.  Before the actual game began, five practice rounds were conducted with 

identical rules. To eliminate any strategic influence of the five practice rounds, subjects 

were rematched with a different partner for the paid 60-round experiment.  

Before beginning the sessions, we drew two random sequences of 65 values (for the 

60-round game and 5 practice rounds), one sequence for each pair member. We used 

these sequences for all pairs in all sessions and treatments. This eliminates the need to 

control for the random variation in values across pairs and treatments and allows us to 

compare more cleanly the subject pairs’ decisions. 

The subjects were students at Ben-Gurion University. Eighty-six subjects (43 fixed 

pairs) participated in Now, 88 subjects (44 fixed pairs) participated in Wait and 80 

subjects (40 pairs) in Seq. A Now session lasted about 90 minutes on average, while the 

Wait and Seq sessions each lasted about 120 minutes. Subjects’ profits were converted to 



 7 

shekels at a fixed experimental-currency-to-shekel ratio of 1:0.9. Subjects earned 

approximately 75 shekels on average (about $21 USD). 

 

3. Theoretical Framework and Hypotheses 
3.1 Theoretical Framework 
The theoretical framework and properties of the one-stage game are presented in Kaplan 

and Ruffle (2012). There are non-cooperative and cooperative solutions to this game. The 

Bayes-Nash equilibrium is to follow the dominant strategy of always entering for values 

greater than zero (i.e., for all values in the present game). One cooperative solution is for 

one player to enter and the other to exit. In a repeated game, this cooperative solution can 

take the form of players taking turns entering and exiting.4 The pair’s expected payoff 

from playing the alternating strategy is 3. Another cooperative solution is to enter only 

with high numbers, such as 3, 4 and 5. This cutoff strategy yields a slightly lower joint 

expected payoff of 2.88. Notwithstanding, Kaplan and Ruffle (2012) find it to be the 

modal strategy in their Now treatment.  

In Wait, a stage-one strategy maps values into the possible actions of enter, exit or 

wait. Full cooperation (maximizing a pair’s joint profits) entails monotonic stage-one 

strategies. Namely, if the action for value x is enter, then the action for all values v>x is 

also enter. Also, if the action for value x is wait, then the action for all values v>x is 

either wait or enter (see Appendix A for the proof). It is worth noting that, in contrast to 

Now in which alternating is the joint-payoff-maximizing strategy, turn taking in stage 1 

can never be part of the social optimal in Wait (see the last paragraph of Appendix A for 

the proof). 

Table 1 displays the joint expected payoffs for all possible pairings of the 21 

monotonic strategies and alternating. To describe the monotonic strategies, we use the 

following notation: the player exits with values to the left of the parentheses, waits with 

values between the parentheses, and enters with values to the right of the parentheses. For 

                                                 
4 In addition to Kaplan and Ruffle (2012), turn taking has been observed in Kwasnica and Sherstyuk (2007) 
in the form of bid rotation in multi-object auctions with complementarities between the objects, as well as 
in Zillante (2011), Cason et al. (2012), Sibly et al. (2014) and Bjedov et al. (2015).  
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example, a player who follows the strategy 12(34)5 exits when he receives a value of 1 or 

2, waits when he receives a 3 or 4, and enters on a 5. The expected payoff calculations 

assume that players play cooperatively in the second stage. Namely, if a player waits in 

the first stage, he enters in the second stage if the other player exited in the first stage and 

exits if the other player entered in the first stage. If both players chose to wait in the first 

stage, they employ the alternating strategy to resolve which one enters in stage two.5  

Table 1 shows that several pairs of strategies achieve the highest joint expected profit 

of 3.60: 123()45-(12345), 12(3)45-(12345), 12()345-(12345), where the dash separates 

player 1’s strategy from player 2’s. This profit compares favorably with the full-

information first-best expected surplus (i.e., only the player with the higher value enters) 

of 3.8. The first strategy pair above divides the expected profit evenly between pair 

members. Nonetheless, because all three of the above strategy pairs are asymmetric, we 

anticipate difficulty coordinating on them. Symmetric strategies are more likely to 

emerge. From the diagonal in Table 1, the most profitable symmetric strategies are 

1(234)5 and 1(23)45 with joint expected profits of 3.53 and 3.44, respectively.   

From the previous paragraph, we saw all three of the asymmetric joint-profit-

maximizing strategies in Wait require one player to wait in stage one, regardless of the 

player’s value, and select between enter and exit only in stage two. The Seq treatment 

precludes Player 1 from waiting while imposing it on Player 2. Thus, the two payoff-

maximizing pairs of strategies in Wait that do not involve Player 1 waiting are also 

associated with the highest expected payoffs in Seq.  

 

3.2 Hypotheses 
As the previous subsection illustrates, both the Wait and Seq treatments offer the potential 

to better coordinate on efficient cooperation and to avoid double entry and double exit. In 

Now, the cooperative pair can obtain a maximum joint expected payoff of 3 by taking 

turns entering and exiting. However, Kaplan and Ruffle (2012) showed that few subjects 

                                                 
5 Other payoff-inferior, second-stage strategies exist. For example, with the first-stage strategy 1(234)5, one 
second-stage strategy is as follows. If the other player waited in the first stage, exit with a value of 2, enter 
with 4 and flip a coin with a value of 3. The joint expected payoff given that both wait is 2.44, which is less 
than 3 obtained by alternating.   
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are able to coordinate on taking turns. Instead, cooperators play cutoff strategies. In this 

game, the socially optimal cutoff strategies of 12()345 yield a joint expected payoff of 

2.88. If paired subjects play this strategy, double entry occurs with probability 9/25, 

double exit with probability 4/25 and efficient coordination the remaining 12/25.  

 By comparison, we anticipate cooperative subjects in Wait to adopt symmetric 

strategies that involve waiting. The socially optimal symmetric strategies of 1(234)5 and 

1(23)45 yield joint expected profits of 3.53 and 3.44, respectively. Both reduce the 

probability of double exit to 1/25 and of double entry to 1/25 for the former strategy and 

to 4/25 for the latter one. The result is that these strategies achieve roughly 20% higher 

profits than the most profitable strategies in Now by committing to a first-stage entry or 

exit decision for fewer values than in the single-stage game. In this way, if only one 

player enters or exits in stage 1, his cooperative partner who waited simply chooses the 

opposite action in stage 2.  

Cooperative subject pairs in Seq avoid double entry and double exit altogether. 

Whatever Player 1’s choice of action in the first stage, a cooperative Player 2 chooses the 

opposite action to ensure precisely one pair member enters. Consequently, profits are 

expected to be highest in Seq. A cooperative pair earns 3.6 in expectation by playing 

either of the following strategy pairs: 123()45-(12345), 12()345-(12345). These strategies 

differ only in Player 1’s choice of action when he draws a value of 3. Both strategy pairs 

lead to efficient cooperation with probability 22/25 and inefficient cooperation with the 

remaining 3/25 probability. Of the two strategy pairs, the first is the most likely since it 

divides the 3.6 units of surplus equally between the paired players.  

In brief, the ability to postpone the entry decision in the Wait treatment ought to 

reduce double entry and double exit and facilitate efficient coordination. To the extent 

that subjects behave cooperatively, the staggered timing of decisions in Seq ought to 

eliminate entirely double entry and exit. Consequently, we expect profits to be highest in 

Seq followed by Wait and lowest in Now. In Now, the socially optimal cutoff strategy of 

12()345 leads to an overall entry frequency of 60% and expected pair profits of 2.88 per 

round. In Wait, the first-stage strategies of 1(234)5 and 1(23)45 along with the stage-two 

actions taken to complement the paired partner’s first-stage decision are expected to yield 

entry percentages of 50% and 56%, respectively with per round expected pair profits of 
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3.53 and 3.44. Finally, in Seq the equitable socially optimal strategy pair of 123()45-

(12345) produces an expected pair profit of 3.6 per round and an overall entry percentage 

of 50%: in 40% of the rounds only Player 1 enters, while in the remaining 60% of the 

rounds only Player 2 enters. 

 

4. Results  
4.1 Entry 
Surprisingly and counter to our conjecture, a comparison of treatments according to the 

overall percentage of entry (see the left panel of Table 2) reveals a higher percentage of 

entry decisions in Wait (77.2%) and Seq (76.6%) than in Now (71.9%). Higher entry on 

values 1 and 2 in the two-stage games accounts for the higher entry overall in these 

treatments. Specifically, subjects are 17 and 19 percentage points (hereafter “p.p.”) more 

likely to enter on a 1 in Wait (38.0%) and in Seq (39.9%), respectively, than in Now 

(20.6%). This disparity in entry frequency between treatments is of a similar magnitude 

for the value 2. Are subjects beating up one another in the two-stage games or do these 

higher entry percentages attest to the successful avoidance of double exit? We will 

answer this question in the next subsection. 

For the value 3, the disparity reverses: subjects in Now enter 10 p.p. and six p.p. 

more frequently than their counterparts in Wait and Seq, respectively. Because entry 

percentages approach 100% in all three treatments for values 4 and 5, differences 

between treatments become negligible. If we treat each pair of subjects’ overall fraction 

of decisions corresponding to enter as the unit of observation, then the non-parametric 

Kruskal-Wallis test rejects the equality of the entry frequency distributions (χ2=4.74, 

p=.094, n=126).  

In Table 3, we report the estimates from two linear probability models on subject i’s 

decision to enter in period t.6 Standard errors are clustered by subject, taking into account 

                                                 
6 In this and the preceding analysis, we focus on Wait subjects’ decision to enter or exit and disregard for 
the time being whether the ultimate decision to enter occurred in stage 1 or 2. Also, because all but one of 
the regressors are binary indicators, the significance and non-significance of all of our coefficients are all 
robust to whether we use the linear probability or Probit model (Angrist and Pischke 2010). We report the 
former for ease of interpretation.   
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possible correlation in the error terms across periods of play. Regression (1) includes only 

indicator variables for the Wait and Seq treatments. The highly significant coefficients of 

0.053 and 0.047 (both p<.001) indicate that subjects are about five p.p. more likely to 

enter in Wait and Seq than in Now in which the constant term reveals an overall entry 

percentage of 71%. The inclusion of a series of controls for game variables and lagged 

play in regression (2) leaves the difference in entry frequency between the two-stage 

games and one-stage games essentially unchanged at around four-plus p.p. and highly 

significant (p<.001 for both).  

The indicator variable value>1 equals 1 if subject i’s period t value is 2, 3, 4 or 5 and 

0 if it is 1. Similarly, value>2 equals 1 if subject i’s period t value is 3, 4 or 5 and 0 if it is 

1 or 2 and so forth for value>3 and value>4. Thus, the estimated coefficients on value>1, 

value>2, value>3 and value>4 reflect the marginal propensity to enter on a 2, 3, 4 or 5, 

respectively. The highly significant positive coefficients reveal that subjects were more 

likely to enter on each additional value. The likelihood of entering on a 3 is a whopping 

41 p.p. higher than it is on a 2. The regression also reveals that the subject’s previous-

period entry and that of his partner are associated with a higher likelihood of entry in the 

current period. Subjects also appear to take into account their partner’s previous-period 

value in a conciliatory manner: for every additional point the partner received last period, 

the subject is four p.p. less likely to enter this period. Finally, the highly significant 

coefficient of 0.099 on the indicator variable for play in the final five rounds attests to a 

modest breakdown in cooperation as the known terminal period approaches. No 

significant difference in the propensity to enter is observed between the first five rounds 

(or similarly for the first 10 rounds) and the middle 50 (or middle 45) rounds.  

 

4.2 Coordination of Outcomes  
Despite higher levels of entry in the two-stage games, Table 4 shows that paired subjects 

in these treatments managed to avoid double exit and coordinate more frequently on the 

efficient-cooperation outcome whereby only the player with the higher value entered. 

More precisely, inefficient double exit drops from 8.7% in Now to 2.8% in Wait and to a 

negligible 0.6% in Seq. At the same time, efficient cooperation increases by 2 p.p. and 5 

p.p. in Wait and Seq compared to the single-stage treatment. However, double entry – the 
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most frequent outcome in all three treatments – displays a modest increase in the two-

stage games, rising from 52.4% in Now to 57.1% in Wait and 53.8% in Seq.  A chi-square 

test of proportions shows that the differences between treatments in the distributions of 

the pair-level outcomes are highly significant (χ2=466, d.f.=6, p<.001).  

Let us examine how subjects made use of the two stages to reduce double exit and 

coordinate on efficient cooperation. The center and right panels of Table 2 display the 

distributions of stage-one decisions in Wait and Seq, respectively, for each of the five 

values. In both treatments and in Now (left panel), exit is the modal decision for value 1. 

Exit remains the modal decision for value 2 in Now and Seq only. In Wait, the wait option 

becomes the modal choice for values 2 and 3. In fact, in large part due to the wait 

decision detracting from the decision to enter in the Wait treatment, stage-one entry 

percentages are lower in Wait than in Seq for all five values. Yet, the fact that overall 

entry percentages are marginally higher in Wait than in Seq suggests that many of these 

stage-one wait decisions convert into stage-two entry decisions.    

When both players wait, the resulting subgame is strategically equivalent to Now. 

However, having seen the partner’s decision to wait allows the player to update his 

beliefs about the partner’s value. As we saw in the center panel of Table 2, subjects are 

four times more likely to wait on a 2 or 3 than on a 4 or 5. In fact, based upon the 

observed waiting frequencies, the chance that the partner has a value of 4 or 5 is reduced 

from 40% (ex ante) to 17.3% (observed). Updating their beliefs about their partners’ 

values accordingly provides a possible rationale for entering on lower values in stage 2 

and may partially account for the higher entry frequencies observed on values 1 and 2 in 

Wait than in Now. 

Table 5 displays the stage-two entry percentages in each treatment conditional on the 

subject’s value and the partner’s stage-one decision. Subjects have no difficulty entering 

when their partner exited in stage 1: in both treatments, entry percentages are close to or 

at 100% for all values conditional on the partner exiting in stage 1. In Wait, exit remains 

the modal decision (44% entry) on a 3. However, the entry percentage jumps to 80% and 

96% on values 4 and 5 after observing the partner’s stage-one entry. If the partner also 

waited in stage 1, entry is the modal decision on all five values and reaches 100% for 

values 4 and 5. Thus, having received a 4 or a 5 and having chosen to wait in stage 1, the 
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table shows that entry is almost certain in stage 2. This begs the question why subjects 

with values 4 and 5 bothered to wait in stage 1 if their intention was to enter in stage 2?  

In Seq, after observing one’s partner enter in stage 1, the subject also enters in the 

second stage 87%, 92% and 96% of the time with values 3, 4 and 5, respectively. Finally, 

the “total” column reveals entry percentages at 87% for value 3, increasing to 94% for 

value 4 and 97% for value 5. These stage-two percentages are similar to the entry 

percentages in stage 1 (right panel of Table 2). With such high entry frequencies, it is no 

wonder double entry accounts for over half of the outcomes in this treatment. The “total” 

column also displays stage-two entry percentages around 50% for both values 1 and 2, 

which are substantially higher than the corresponding stage-one entry percentages. This 

disparity can be partially attributed to Player 2’s effort to avoid double exit. 

 

4.3 Profits 
On the one hand, overall higher entry in Wait and Seq would lead us to expect lower 

profits than in Now. On the other hand, we saw in the previous subsection that subjects in 

the two-stage games avoid double exit and succeed in attaining efficient cooperation 

more often. Table 6 displays summary statistics for paired players’ profits. It turns out 

that pair profits are highest in Seq (170.2 on average), followed by Wait (167.9) and 

lowest in Now (163.2). A comparison of the distribution of pair profits for any two 

treatments at time using the Mann-Whitney rank-sum test reveals only one significant 

difference: profits in Seq are significantly higher than those in Now (z=−2.04, p=0.04).  

If we express the mean pair profit by treatment as a percentage of the full-

information efficient outcome by which only the high-value player enters (in the case of 

ties only one player enters) using the actual distribution of values drawn over the 60 

rounds, Seq subjects earn on average 73.1% of this first-best social optimum compared to 

72.0% for Wait subjects and 70.1% for Now subjects. All three percentages greatly 

exceed the 52.6% earned by Nash play, attesting to some measure of cooperation 

achieved in all treatments. 

The more striking contrast concerns the differential degrees of dispersion of paired 

subjects’ profits across treatments. To begin, note from column 3 of Table 6 that the 

standard deviation of pair profits of 13.1 in Now is about half that of the Wait and Seq 
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treatments. The histograms of pair profits in Figure 1 offer some insight. In Now, fully 40 

out of 43 subject pairs’ profits fall between 140 and 180. Moreover, 32/40 pairs earn in 

the narrower range of 160 to 180. By contrast, the pair profit distributions for the Wait 

and Seq treatments resemble a uniform distribution over the entire range of 120 to 220. 

Only 18/44 and 18/40 pairs earn between 140 and 180 in Wait and Seq, respectively.      

What is more, the highest pair profit in Now was 181, meaning that not a single pair 

appears in any of the three highest profit categories (190-220) in Figure 1. Contrast this 

with a highest pair profit of 215.7 in Wait and 211.3 in Seq, and 30% of the pairs in Wait 

and 23% of the pairs in Seq that placed in the three highest profit categories. At the other 

extreme, among the 18 paired subjects that earned less than 140 in the experiment, only 

two originate from Now, while nine played in Wait and seven in Seq.  

The upshot of this analysis is that the two-stage games permit cooperative pairs to do 

better than is possible in the one-stage game, whereas uncooperative pairs tend to do 

worse with the addition of the second stage. Why would the better conditions for 

coordination in Wait and Seq affect pairs in different directions? To address this question, 

we analyze in the next two subsections how the behavior of the low-profit subjects in 

Wait and Seq differs from that of their high-profit counterparts.  

  

4.4 Individual Strategy Inference 
Recall from Section 3 that in the Wait treatment there are 21 possible monotonic cutoff 

strategies in stage 1 that condition on the subject’s value. For each subject we compare 

the ability of each of the 21 monotonic cutoff strategies in Table 1 and the alternating 

strategy to classify correctly subjects’ stage-one decisions. The strategy that minimizes 

the number of errors in classifying the subject’s observed decisions is deemed the 

strategy the subject most likely employed. Table 7 presents the distribution of these best-

fit strategies for stage 1 of Wait.7 For each strategy we denote the number of subjects that 

employ the strategy (column 2),8 the mean number of errors (deviations from the 

                                                 
7  The inferred strategies are based on rounds 6-55 to exclude learning in the initial rounds and observed 
endgame effects. The distributions of best-fit strategies are highly similar to other ranges of included 
periods, such as all 60 rounds, the first 50 or 55 rounds and the last 50 rounds. 
8 For several subjects, two or more strategies tied for the fewest errors. In these cases, we assign a share of 
1/n to each of the n tied strategies. 
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strategy) by those who employed it (column 3), the mean profit of those who employed 

the strategy and that of those subjects’ partners as well as the mean entry percentage 

(after both stages of play) for the subject and his partner.  

Seventy-five out of the 88 subjects (85%) employ strategies that involve waiting. 

The remaining subjects whose strategy doesn’t include waiting either enter on all values 

(9%), exit on 1 and enter on values 2-5 (5.7%), or exit on 1 and 2 and enter on values 3-5 

(1%). Capturing 24/88 subjects, the strategy 1(23)45 is the most widely employed. It is 

also the second most jointly profitable symmetric strategy, as evidenced by the high 

realized mean profit of 95.0 (column 4 of Table 7) earned by its adopters. The strategy of 

(123)45 is the second most widely used strategy with 12.75/88 subjects using it. These 

two strategies differ only in that 1(23)45 dictates exiting on the value of 1 while (123)45 

calls for waiting. The latter choice to wait leads to lower mean profits of 82.3. One lone 

subject employed the joint profit-maximizing symmetric strategy of 1(234)5, while no 

pair was found to play any of the asymmetric strategy pairs that earn more than 1(234)5. 

Nor did any pairs in Wait adopt the payoff-inferior alternating strategy.  

The subject’s profit along with his partner’s (column 5) attest to the pair’s degree of 

cooperation. Paired partners in which at least one pair member followed the strategy 

1(23)45 earned similarly high profits, implying a high level of reciprocal cooperation. 

Those who followed the strategy 1(23)45 also recorded the fewest deviations from their 

inferred strategy.9 Tracking this strategy to stage 2, subjects on the whole appear to be 

playing the strategy 1(2/3)45 (wait with values 2 and 3 and, if the partner also waited, 

exit on a 2 and enter on a 3). 

Another 5.5 subjects played the strategy (12345), namely, “always wait”. Looking at 

the second-to-last column of Table 7, we see that these subjects entered an astonishing 

                                                 
9 Overall, the error rates are low for most strategies, thereby attesting to the effectiveness of this simple 
technique in capturing subjects' behavior. Of the 4400 decisions made by the 88 subjects in Wait and the 
4000 decisions made by the 80 subjects in Seq between rounds 6-55, 3740 (or 85%) and 3615 (or 90.4%) 
correspond to the best-fit strategy inferred for each subject compared to 4009 out of the 4300 (or 93.2%) 
decisions made by the 86 subjects in Now. The addition of the waiting option in Wait increases the number 
of monotonic pure-strategy cutoffs from six in Now to 21 in Wait, thus accounting for the highest error rate 
in Wait and lowest in the single-stage, binary-choice game, Now. 
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98% of the time in stage 2, eight p.p. higher than the “always enter” subjects  in Wait and 

11 p.p. higher than the “always enter” subjects in Now! That is, the always-wait subjects 

are wholly uncooperative – even more so than those who play always enter. The 

availability of the waiting option seems to attract the least cooperative types and, under 

the guise of waiting to decide, entices them to behave even more uncooperatively than 

they would in the absence of this option.  

Now the natural question to ask is: were they successful in their attempt to deceive 

their partners? The last column of Table 7 reveals that their uncooperativeness was 

reciprocated with entry of 90% by their partners. This compares with entry of 86% by 

partners paired against “always enter” in Wait and 92% against “always enter” in Now. 

Hence, subjects’ attempt to deceive was foiled, leading to low profits for themselves and 

the pair overall. The addition of the waiting option failed to conceal uncooperativeness 

whether in the form of always enter or always wait followed by entry.  

In Table 8 we group together the best-fit strategies for subjects in Now (left panel) as 

well as for Player 1 subjects in Seq (right panel). The strategy 12()345 according to which 

subjects exit on values 1 and 2 and enter on values 3, 4 and 5 is the predominant best-fit 

strategy in Now (53/86 or 62% of subjects) and among Player 1 subjects in Seq (20/40 or 

50%). In striking contrast, only a single subject utilized this strategy in Wait (1/88) in 

which the waiting option is also available. Only two pairs of subjects used the alternating 

strategy in Now despite it being the most profitable strategy in this treatment.     

 Subjects who played the dominant strategy of ()12345 (i.e., always enter) in Now 

earned a profit of 74 on average, 14% less than the mean profit earned by subjects who 

played the socially optimal cutoff strategy 12()345. In the two-stage treatments, by 

contrast, subjects who played always enter earned only 67.7 and 65.0 in Wait and Seq, 

respectively, which are more than between 40% and almost 50% below the mean profit 

of 95 for the socially optimally symmetric cutoff strategy of 1(23)45 in Wait and the 

mean profit of 96.4 from Player 1’s socially optimally cutoff strategy of 123()45 in Seq. 

The message is that cooperative subjects earn substantially more than uncooperative 

subjects, especially in the Wait and Seq treatments in which cooperation helps to avoid 

double exit and coordinate on efficient cooperation.         
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4.5 Behavior of Low-Profit Subjects in Wait and Seq 
Overall, the possible sources of low profits in Wait and Seq are inefficient cooperation, 

double exit and double entry outcomes. Yet, we saw that inefficient cooperation and 

double exiting are uncommon in Wait (accounting for 1.7% and 2.8% of the total 

outcomes respectively according to Table 4) and in Seq (3.8% and 0.6%, respectively). 

Double entry, on the contrary, accounts for 57% and 54% of the outcomes in each of the 

respective two-stage treatments. By the structure of the games, double entry must take 

place in stage 1 in Now and in staggered stages in Seq, whereas in Wait it can be the 

result of both subjects entering in stage 1, both waiting in stage 1 and entering in stage 2 

or one entering in stage 1 and the other in stage 2. In fact, 57% of instances of double 

entry in Wait arise from both subjects entering in stage 1, 17% from both subjects 

entering in stage 2, and a troubling 26% from subjects entering in different stages. This 

breakdown of the percentages of double entry attests to uncooperative decisions. 

 We already observed from Table 5 subjects’ tendency to largely disregard their 

partners’ first-stage decision and enter on values 4 and 5, and also on value 3 if the 

partner also waited. Table 9 examines more closely waiting subjects’ stage-2 choices 

conditional on their partner also having chosen to wait in stage 1 as a function of their 

values and their pairs’ realized profits. For the nine lowest profit pairs that earned 120-

139, we see, first of all, the large number of observations uniformly distributed across the 

five values, suggesting that many low-profit subjects chose to wait in stage 1 regardless 

of their value. Secondly, all of the entry percentages for these subjects are 83% and 

higher, rising to 100% for values 4 and 5 – to repeat for emphasis, this table concerns 

periods in which the partner also waited in stage 1. By contrast, the paucity of 

observations for values 1, 4 and 5 for the highest-profit pairs (earnings between 200 and 

220) reflects a more selective use of the waiting option. The six highest earning pairs 

almost always exited on a 1 in stage 1 and entered on a 4 and 5. They primarily invoked 

the wait option when they received values 2 and 3. On the former value, they entered 

only 30% of the time, while on the latter value, they entered 77% of the time.  

The differences in entry percentages across profit categories for a given value are 

even more stark conditional on the partner entering in stage 1 (Table 10). Despite the 

partner having already visibly entered in stage 1, subject pairs in the lowest profit 
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category nonetheless enter with a frequency of 67.7% on a value of 1, increasing to 100% 

on values 4 and 5. Moving across the table, these entry frequencies drop dramatically for 

the second-highest and highest profit categories. In the highest profit category, no subject 

ever entered on a value of 1 or 2. In fact, among these highest profit pairs, the entry 

frequency increases to only 11.1% on a value of 4.  

 In summary, successful subject pairs condition their second-stage entry decision on 

their value and their partner’s first-stage decision, whereas lower profit pairs tend to 

disregard both of these and enter in stage two.  

  The contrast in stage-two behavior between low- and high-profit subject pairs is 

equally as stark in the Seq treatment. Having observed their partners (Player 1) enter in 

stage 1, Table 11 reveals that Players 2 from the lowest profit pairs nonetheless enter 3/4 

of the time even on a 1, quickly increasing to 100% entry on values 3, 4 and 5. By 

contrast, Player 2 subjects in the highest-profit pairs never enter on a 1 (0%), with their 

entry frequency rising gradually to 36% on a value of 4 and 64% on a value of 5. 

 

5 Conclusions 
This paper illustrates how a modest institutional change can have important consequences 

for cooperation and efficiency. At first glance, converting a single-stage game, Now, into 

two-stage games, Wait and Seq, increases the frequency of individual uncooperative 

decisions. Yet the timing of these decisions enabled paired players to achieve a higher 

degree of pairwise cooperation and ultimately higher profits in these two-stage games.  

However, a closer look at the distribution of profits reveals fully half of the subject 

pairs in Wait and 35% of the subject pairs in Seq earned less than in Now. The dark side 

of the waiting option is that this cooperation-enabling tool can be exploited by selfish 

individuals to disguise their uncooperative behavior. Rather than conspicuously entering 

right away, waiting veils their intent. Similarly, most first movers in Seq enter more than 

is socially optimal. Second movers retaliate by doing the same. 

Our paper offers recommendations to economic parties designing mechanisms. Take 

for example a company or government involved in the procurement of a large contract: 

construction project, fighter jet, etc. (or selling off a large asset such as real estate or 

spectrum). It is typical to conduct one of two prevalent auction-type procedures. One 
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procedure involves a single stage in which bidders enter and submit bids. A second 

procedure is to hold a two-stage process in which potential entrants are made known in 

the first stage and bidding occurs in the second stage. Intuitively, one would think that in 

order to prevent collusion a designer would want less information revealed between 

bidders and thus favor one stage over two stages or choose not to publicize the bidders 

participating. However, if a designer is primarily concerned with attracting a bidder, then 

the design should involve sequentially asking bidders if they wish to participate and 

announcing entry results since we found that double exit is lowest in Seq. If the designer 

is primarily concerned with instigating a competitive process, then two stages are best 

since we found Wait has the most double entry. Finally, if the designer is primarily 

concerned with inducing the low-cost supplier to enter, then either form of two-stage 

process will suffice since we found that Seq or Wait have similarly high levels of the 

combination of efficient cooperation and double entry.  
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Table 1  
 The joint expected payoffs for any pair of strategies among 21 monotonic strategies and alternating (Wait treatment)  

 

Player 2 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

12345() 1234(5) 1234()5 123(45) 123(4)5 123()45 12(345) 12(34)5 12(3)45 12()345 1(2345) 1(234)5 1(23)45 1(2)345 1()2345 [12345] (1234)5 (123)45 (12)345 (1)2345 ()12345 Alternate 

Pl
ay

er
 1

 

1 12345() 0.00 1.00 1.00 1.80 1.80 1.80 2.40 2.40 2.40 2.40 2.80 2.80 2.80 2.80 2.80 3.00 3.00 3.00 3.00 3.00 3.00 1.50 

2 1234(5) 1.00 1.80 1.80 2.42 2.42 2.40 2.86 2.86 2.84 2.80 3.12 2.92 3.10 3.06 3.00 3.20 3.20 3.18 3.28 3.14 3.00 2.00 

3 1234()5 1.00 1.80 1.73 2.44 2.37 2.29 2.92 2.85 2.77 2.68 3.24 3.17 3.09 3.00 2.89 3.40 3.33 3.25 3.16 3.05 2.93 1.97 

4 123(45) 1.80 2.42 2.44 2.88 2.9 2.88 3.18 3.20 3.18 3.12 3.32 3.34 3.32 3.26 3.16 3.30 3.32 3.30 3.24 3.14 3.00 2.40 

5 123(4)5 1.80 2.42 2.37 2.90 2.85 2.77 3.24 3.19 3.11 3.00 3.44 3.39 3.21 3.20 3.05 3.50 3.45 3.37 3.26 3.11 2.93 2.37 

6 123()45 1.80 2.40 2.29 2.88 2.77 2.64 3.24 3.13 3.00 2.84 3.48 3.37 3.24 3.08 2.89 3.60 3.49 3.36 3.20 3.01 2.80 2.30 

7 12(345) 2.40 2.86 2.92 3.18 3.24 3.24 3.36 3.42 3.42 3.36 3.40 3.46 3.46 3.40 3.28 3.30 3.36 3.36 3.30 3.18 3.00 2.70 

8 12(34)5 2.40 2.86 2.85 3.20 3.19 3.13 3.42 3.41 3.35 3.24 3.52 3.51 3.45 3.34 3.17 3.50 3.49 3.43 3.32 3.31 2.93 2.67 

9 12(3)45 2.40 2.84 2.77 3.18 3.11 3.00 3.42 3.35 3.24 3.08 3.56 3.49 3.38 3.22 3.01 3.60 3.53 3.42 3.26 3.05 2.80 2.60 

10 12()345 2.40 2.80 2.68 3.12 3.00 2.84 3.36 3.24 3.08 2.88 3.52 3.40 3.24 3.04 2.80 3.60 3.48 3.32 3.12 2.88 2.60 2.50 

11 1(2345) 2.80 3.12 3.24 3.32 3.44 3.48 3.40 3.52 3.56 3.52 2.80 3.48 3.56 3.48 3.36 3.20 3.32 3.36 3.32 3.20 3.00 2.90 

12 1(234)5 2.80 2.92 3.17 3.34 3.39 3.37 3.46 3.51 3.49 3.40 3.48 3.53 3.51 3.42 3.25 3.40 3.45 3.43 3.46 3.17 2.93 2.87 

13 1(23)45 2.80 3.10 3.09 3.32 3.21 3.24 3.46 3.45 3.38 3.24 3.56 3.51 3.44 3.30 3.09 3.50 3.49 3.42 3.28 3.07 2.80 2.80 

14 1(2)345 2.80 3.06 3.00 3.26 3.20 3.08 3.40 3.34 3.22 3.04 3.48 3.42 3.30 3.12 2.88 3.50 3.44 3.32 3.14 2.90 2.60 2.70 

15 1()2345 2.80 3.00 2.89 3.16 3.05 2.89 3.28 3.17 3.01 2.80 3.36 3.25 3.09 2.88 2.61 3.40 3.29 3.13 2.92 2.65 2.33 2.57 

16 (12345) 3.00 3.20 3.40 3.30 3.50 3.60 3.30 3.50 3.60 3.60 3.20 3.40 3.50 3.50 3.40 3.00 3.20 3.30 3.30 3.20 3.00 3.00 

17 (1234)5 3.00 3.20 3.33 3.32 3.45 3.49 3.36 3.49 3.53 3.48 3.32 3.45 3.49 3.44 3.29 3.20 3.33 3.37 3.32 3.17 2.93 2.97 

18 (123)45 3.00 3.18 3.25 3.30 3.37 3.36 3.36 3.43 3.42 3.32 3.36 3.43 3.42 3.32 3.13 3.30 3.37 3.36 3.34 3.07 2.80 2.90 

19 (12)345 3.00 3.28 3.16 3.24 3.26 3.20 3.30 3.32 3.26 3.12 3.32 3.46 3.28 3.14 2.92 3.30 3.32 3.34 3.12 2.90 2.60 2.80 

20 (1)2345 3.00 3.14 3.05 3.14 3.11 3.01 3.18 3.31 3.05 2.88 3.20 3.17 3.07 2.90 2.65 3.20 3.17 3.07 2.90 2.65 2.33 2.67 

21 ()12345 3.00 3.00 2.93 3.00 2.93 2.80 3.00 2.93 2.80 2.60 3.00 2.93 2.80 2.60 2.33 3.00 2.93 2.80 2.60 2.33 2.00 2.50 

22 Alternate 1.50 2.00 1.97 2.40 2.37 2.30 2.70 2.67 2.60 2.50 2.90 2.87 2.80 2.70 2.57 3.00 2.97 2.90 2.80 2.67 2.50 3.00 

 

Notation - The player exits on values to the left of the parentheses, waits on values in the parentheses, and enters on values to the right of the parentheses. For example, a player who 
employs the strategy 12(34)5, exits when he receives a value of 1 or 2, waits on values of 3 and 4 and enters when he receives a 5. 
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Table 2 
Left Panel – frequency of entry for each value for Now, Wait and Seq treatments. 
Center Panel – distribution of stage-1 entry, wait and exit decisions for each value in Wait treatment.  
Right Panel – frequency of stage-1 entry for each value for Seq treatment. 

  Overall Entry Wait Stage-1 Decision Seq Stage-1  
Entry Value Now Wait Seq Entry Wait Exit 

1 20.6% 38.0% 39.9% 18.0% 39.5% 42.5% 30.7% 
2 33.9% 55.2% 48.5% 26.5% 59.9% 13.6% 44.1%  
3 93.2% 83.4% 87.3% 43.5% 55.9% 0.5% 87.9% 
4 97.2% 98.5% 96.6% 84.7% 15.0% 0.3% 99.2% 
5 97.3% 99.0% 98.2% 85.7% 13.6% 0.8% 99.6% 

Overall 71.9% 77.2% 76.6% 54.2% 35.7% 10.2% 75.2% 
Obs 5160 5280 4800 2859 1884 537 2400 

Table 3 
Linear Probability Model on overall decision to enter 

Regressor (1) (2) 

Wait .053*** 
(.012) 

.044*** 
(.010) 

Seq .047*** 
(.016) 

.040*** 
(.013) 

value>1 ─ .138*** 
(.013) 

value>2 ─ .414*** 
(.021) 

value>3 ─ .105*** 
(.009) 

value>4 ─ .011** 
(.005) 

enteri,t-1 ─ .125*** 
(.013) 

enter-i,t-1 ─  .078*** 
(.017) 

value-i,t-1 ─ -.041*** 
(.004) 

value-i,t-1 * enter-i,t-1 ─ .014*** 
(.005) 

first5 ─ -.008 
(.015) 

last5 ─ .099*** 
(.010) 

constant 0.710 
(0.013) 

.231 
(.019) 

Obs 15,240 14,986 

Adj. R2 .003 .419 
 

Dependent variable - enterit equals 1 if 
subject i entered in period t and equals 0 if 
subject exited in period t 
 
Wait, Seq – indicator variable  for whether 
observation is from Wait or Seq treatment, 
respectively 
 
value>1 equals 1 if subject i’s period t 
value is 2, 3, 4 or 5 and equals 0 if value is 
1. Similarly, value>2 equals 1 for values 3, 
4 or 5 and 0 otherwise, and so forth for 
value>3 and value>4 
 
enteri,t-1, enter-i,t-1 – subject’s and his 
partner’s previous-period entry decisions, 
respectively 
  
value-i,t-1 – partner’s previous-period value 
(from 1 to 5) 
 
value-i,t-1*enter-i,t-1 – interaction  term 
between partner’s previous-period value 
and entry decision 
 
first5 – indicator variable for first 5 rounds  
 

last5 – indicator variable for last 5 rounds 
(rounds 56-60) 
 
*** p-value less than .01 
** p-value less than .05 
* p-value less than .10 
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Table 4 
Distribution of outcomes by treatment  

Outcome Now Wait Seq 

efficient cooperation 36.4% 38.5% 41.8% 
inefficient cooperation 2.5% 1.7% 3.8% 
double entry 52.4% 57.1% 53.8% 
double exit 8.7% 2.8% 0.6% 
Total 100.0% 100.0% 100.0% 
 
Efficient cooperation – only the subject with the (weakly) higher value enters  
Inefficient cooperation – only the subject with the (strictly) lower value enters 
Double entry - both subjects enter  
Double exit - both subjects exit  
 

 

 

Table 5 – Stage-two entry percentages conditional on partner’s stage-one decision 

 

Value 

Wait Seq 

Exit enter wait total exit enter total 

1 97.6% 26.8% 61.4% 50.7% 92.7% 28.2% 49.1% 

2 100% 30.1% 64.0% 47.9% 95.2% 42.3% 52.9% 

3 100% 44.1% 92.6% 71.3% 99.3% 81.9% 86.7% 

4 100% 79.7% 100% 91.5% 100% 92.1% 94.0% 

5 100% 95.9% 100%  98.1% 100% 96.0% 96.9% 

 

 

Table 6 – Summary statistics for pair profits by treatment and, for Seq, by player type 

Treatment Obs. Mean Std. Dev. Min Max 

Now 43 163.2 13.1 129.3 181 

Wait 44 167.9 26.0 125.3 215.7 

Seq 40 170.2 23.9 128.7 211.3 

Seq – Player 1  40 86.9 13.8 60.7 118 

Seq – Player 2 40 83.3 13.8 58.7 106 
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Table 7 – Best-Fit Strategies in Wait 
Distribution of best-fit strategies with the mean fraction of errors by strategy, mean own and partner's profit 
and mean own and partner’s entry frequency for Wait, based on rounds range 6-55 
  Wait 

  

Strategy 
Number 

who played 
strategy  

Fraction 
of errors 

Mean 
profit 

Mean 
profit of 
partner 

Entry 
percent 

(after both 
stages) 

Partner entry 
percent (after 
both stages) 

in
vo

lv
es

 w
ai

tin
g 

12 (3) 45 7 .07 96.0 93.4 0.63 0.66 
1 (2345) 0.5 .36 63.7 75.7 0.88 0.98 
1 (234) 5 1 .08 92.0 123.7 0.45 0.52 
1 (23) 45 24 .08 95.0 93.3 0.64 0.65 
1 (2) 345 1.25 .26 82.7 75.4 0.81 0.79 
(12345) 5.5 .26 69.0 64.5 0.98 0.90 
(1234) 5 1.25 .43 80.6 62.1 0.97 0.77 
(123) 45 12.75 .15 82.3 79.9 0.80 0.75 
(12) 345 12.5 .15 83.6 80.0 0.82 0.80 
(1) 2345 8.5 .18 71.2 72.0 0.90 0.89 

do
es

 n
ot

 in
vo

lv
e 

w
ai

tin
g 

() 12345 8 .20 67.7 68.9 0.90 0.86 
1 () 2345 4.75 .15 74.8 80.4 0.84 0.90 
12 () 345 1 .26 67.0 88.3 0.77 0.90 
123 () 45 - - - -   
1234 () 5 - - - -   
12345 () - - - -   

alternating - - - -   
 Average Total 88 .14 85.2 85.2 0.76 0.76 
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Table 8 – Best-Fit Strategies in Now and Seq 
Distribution of best-fit strategies with the mean fraction of errors by strategy, mean own and partner's profit and mean own and partner’s entry frequency for 
Now and Seq, based on rounds range 6-55 
  Now                                                                       Seq 

Strategy 

Number 
who 

played 
strategy  

Fraction 
of errors 

Mean 
profit 

Mean 
profit of 
partner 

Entry 
percent  

Partner 
entry 

percent  

Number 
who played 

strategy  

Fraction 
of errors 

Mean 
profit 

Mean 
profit of 
partner 

Entry 
percent 

Partner 
entry 

percent 

() 12345 13.5 0.11 74.0 70.3 0.89 0.85 9 0.04 65.0 60.3 0.96 0.92 
1 () 2345 15 0.09 77.0 76.7 0.81 0.81 7 0.05 75.6 70.1 0.82 0.82 
12 () 345 53 0.42 84.6 85.6 0.66 0.68 19.5 0.06 81.0 80.5 0.70 0.74 
123 () 45 0.5 0.16 77.7 87.3 0.57 0.60 4.5 0.06 96.4 88.5 0.52 0.62 
1234 () 5 - - - -     - - - - - - 
12345 () - - - -     - - - - - - 

alternating 4 0.14 85.3 85.3 0.56 0.56 - - - - - - 
Average Total 86 0.30 81.6 81.6 0.72 0.72 Total 40 0.05 78.2 75.0 0.76 0.79 
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Table 9 
Percentage of entry decisions in stage 2 (Wait), conditional on partner waiting in stage 1, by profit 
category and value 

Pair  
Profits 

 
Value  

120-139 140-159 160-179 180-199 200-220 Overall 

  Perc. Obs. Perc. Obs. Perc. Obs. Perc. Obs. Perc. Obs.   
1 86.5% 52 61.05% 41 48.6% 35 41.2% 24 25.0% 4 61.4% 
2 83.3% 42 88.0% 25 90.0% 20 51.5% 55 30.3% 33 64.0% 

3 98.4% 61 100.0% 32 100.0% 20 93.4% 83 77.4% 53 92.6% 
4 100.0% 52 100.0% 15 100.0% 7 100.0% 8 100.0% 3 100.0% 

5 100.0% 47 100.0% 11 100.0% 8 100.0% 5 100.0% 1 100.0% 
Number of 

pairs 9 11 7 11 6 44 

Notes: Percentage of stage-two decisions in the Wait treatment corresponding to enter, conditional on 
the partner waiting in stage one, by subject’s own value and subject pair’s profit category. 
 
 
Table 10 
Percentage of entry decisions in stage 2 (Wait), conditional on partner entering in stage 1, by profit 
category and value 

Pair  
Profits 

 
Value  

120-139 140-159 160-179 180-199 200-220 Overall 

  Perc. Obs. Perc. Obs. Perc. Obs. Perc. Obs. Perc. Obs.   
1 67.7% 31 28.6% 56 10.0% 40 4.3% 23 0.0% 7 26.8% 
2 92.5% 40 67.8% 59 19.5% 77 3.1% 96 0.0% 44 30.1% 

3 95.1% 41 92.5% 40 61.4% 44 23.1% 104 4.5% 66 44.1% 
4 100.0% 26 86.4% 22 100.0% 7 40.0% 5 11.1% 9 79.7% 

5 100.0% 45 93.3% 15 100.0% 7 100.0% 1 60.0% 5 95.9% 
Number of 

pairs 9 11 7 11 6 44 

Notes: Percentage of stage-two decisions in the Wait treatment corresponding to enter, conditional on 
the partner entering in stage one, by subject’s own value and subject pair’s profit category. 
 
 

Table 11 
Percentage of entry decisions in stage 2 (Seq), conditional on partner entering in stage 1, by profit 
category and value 

Pair  
Profits 

 
Value  

120-139 140-159 160-179 180-199 200-220 Overall 

  Perc. Obs. Perc. Obs. Perc. Obs. Perc. Obs. Perc. Obs.   
1 74.3% 70 36.8% 38 12.4% 89 4.4% 68 0.0% 19 26.8% 
2 81.6% 76 78.4% 51 31.1% 106 5.4% 74 10.3% 29 30.1% 

3 100.0% 87 96.7% 61 94.7% 113 57.5% 80 25.7% 35 44.1% 
4 100.0% 88 100.0% 56 100.0% 118 91.6% 83 36.1% 36 79.7% 

5 100.0% 92 100.0% 59 98.6% 144 97.9% 97 63.9% 36 95.9% 
Number of 

pairs 7 10 13 10 5 40 

Notes: Percentage of stage-two decisions in the Sequential treatment corresponding to enter, 
conditional on the partner entering in stage one, by subject’s own value and subject pair’s profit 
category. 
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Figure 1 – Histogram of paired subjects’ joint profits 

 
 
 
 
Appendix A: Monotonic Strategies 
 

Proposition: The pair’s joint expected profits are maximized by each pair member 

using a monotonic strategy in the first stage of the two-stage game. This will never 

entail the degenerate case of one player always entering and the other always exiting.  

 

Proof:  More general than our simple game, suppose that each player receives a 

randomly drawn integer between a and b inclusive where the probability of receiving 

a number x is Пx (where Пx > 0 and ∑x€{a...b} Пx = 1). By exiting a player receives zero 

and entering he receives his number if the other player exits, but receives some 

function f(x) increasing in his number, x, if both enter (in stage 1 or in stage 2). We 

assume that f(x) is strictly less than his number x (and f’(x)<1); hence entry imposes a 

negative externality on the other player. We also assume that if it is profitable for a 

player to enter alone (that is, his value is greater than zero), then it is also profitable 

for him to enter when his partner enters (f > 0 for values greater than zero). 



 28 

The cooperative solution is given by the pair of strategies that maximizes the sum 

of the players’ expected payoffs. If the player waited in stage 1, we assume he will 

enter and receive his number if his partner exited in stage 1, and he will exit and 

receive zero if his partner entered in stage 1.  

Suppose the partner enters with probability p(y) and waits with probability t(y) 

when his number is y. The value of both waiting and optimally cooperating in the 

second stage is z(x,y), which is weakly increasing in x and weakly decreasing in y 

(from the cutoff strategies found in the one-stage game in Kaplan and Ruffle, 2012). 

The joint expected payoff to entering in stage 1 with number x is, 

 

∏y{x(1− p(y) − t(y)) + p(y)( f (x) + f (y)) + x⋅ t(y)}
y∈{a,b}

∑  

The joint expected payoff to exiting out in stage 1 with number x is 

 

∏y{yp(y) + y⋅ t(y)}
y∈{a,b}

∑ . 

The joint expected payoff to waiting in stage 1 with number x is 

 

∏y{x(1− p(y) − t(y)) + yp(y) + t(y)z(x,y)
y∈{a,b}

∑ }.   

First, note that ∑ 𝑡𝑡(𝑦𝑦)(𝑦𝑦∈{𝑎𝑎,𝑏𝑏} z(x + 1, y) − z(x, y)) ≤ ∑ 𝑡𝑡(𝑦𝑦)𝑦𝑦∈{𝑎𝑎,𝑏𝑏} . If 

∑ 𝑡𝑡(𝑦𝑦)(𝑦𝑦∈{𝑎𝑎,𝑏𝑏} z(x + 1, y) − z(x, y)) > ∑ 𝑡𝑡(𝑦𝑦)𝑦𝑦∈{𝑎𝑎,𝑏𝑏} , then we can use the same 

entry/exit decisions for the first player for x+1 with x and do better since any benefit 

due to player 1 receiving x or f(x) when the second player waits must be r*x+q*f(x) 

where r+q≤1, hence the derivative r+qf’(x)≤1. This would contradict the assumption 

that z(x,y) entails optimal cooperation. 

We now see that the cooperative solution entails monotonic strategies. This is 

because if the joint expected payoff to entering is greater than the joint expected 

payoff to waiting for x, then it also holds for any value greater than x. And likewise if 

the joint expected payoff to waiting exceeds the joint expected payoff to exiting.  

We still have to worry about the case of indifference between waiting and 

entering for several values of x. Indifference occurs only if the partner always stays 

out. The pair then earns the same whether the player enters or waits and then enters. 

In a repeated game, one player always exiting and the other always entering can take 

the form of alternating. As long as the upper bound of one player L's range of 

numbers strictly exceeds the lower bound of his partner H's range of numbers (and 

vice-versa), always exiting and alternating in the repeated game can never be socially 
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optimal since the player always exiting (player L) can wait with his highest number 

and the player always entering (player H) can wait with any number strictly below 

that number. Whenever both players wait, player L enters and player H exits in stage 

2 to obtain a higher joint payoff than from player L always exiting.  

 
 
Appendix B: Instructions Sheets 
 

Now Treatment – Instructions Sheet 

Welcome 
The experiment in which you will participate involves the study of decision-making. If 

you follow the instructions carefully and make wise decisions, you may earn a considerable 
amount of money. Your earnings depend on your decisions. All of your decisions will remain 
anonymous and will be collected through a computer network. Your choices are to be made at 
the computer at which you are seated. Your earnings will be revealed to you as they 
accumulate during the course of the experiment. Your total earnings from the experiment will 
be paid to you, in cash, at the end of the experiment.   

You are requested not to talk to one another at any time during the experiment. If you have 
any questions, raise your hand and a monitor will assist you. It is important that you 
understand the instructions. Misunderstandings can result in lower earnings. Finally, we ask 
that even after the experiment is over you not discuss the details of this experiment with 
anyone.  

There are several experiments of the same type taking place at the same time in this room.  

This experiment consists of 60 rounds. You will be paired with another anonymous 
person. This person will remain the same for all 60 rounds.  

Your information 

At the beginning of each round, you and the person with whom you are paired each 
receives a randomly drawn number between 1 and 5 inclusive. You will see your number, and 
learn the other person's number only after the round ends.  

Decision stage 

After you've seen your number and the other person has seen his number, each of you must 
decide separately between one of two actions: enter or exit.  

Round Profit 

At the end of each round, your number, your decision, and the other person’s decision 
determine your round profit in the following way.  

- If you both chose to exit, then you both receive zero points.  

- If you chose to exit and the other person chose to enter, then you receive zero points and the 
other person receives points equal to his number.  

- If you chose to enter and the other person chose to exit, you receive points equal to your 
number and the other person receives zero points.  

- If you both chose to enter, then you receive points equal to one-third of your number and the 
other person receives points equal to one-third of his number.  



 30 

The table below summarizes the payoff structure. Suppose you receive a number, x, and the 
other person receives a number, y. The round profits for each of the given pair of decisions 
are indicated in the table below. The number preceding the comma refers to your round profit; 
the number after the comma is the other person’s round profit. 

 

 

 
        Other Person 

  Enter Exit 

          You 
Enter  x/3, y/3 x, 0 

Exit 0, y 0, 0 

 

After you have both made your decisions for the round, you will see the amount of points you 
have earned for the round and the other person’s decision and number. Please record these 
results from each round in your Personal Record Sheets. When you are ready to begin the 
next round, press Continue.  

Total Payment 

Each round follows this same sequence of events. At the end of the experiment, you will 
be paid your accumulated earnings from the experiment in cash. Each point earned in the 
experiment is equivalent to 0.9 shekels. While the earnings are being counted, you will be 
prompted to complete a questionnaire.  

Prior to the beginning of the experiment, you will partake in five practice rounds. The 
profits earned in these practice rounds will not be included in your payment. The rules of the 
practice rounds are otherwise identical to those of the experiment in which you will 
participate. The purpose of the practice rounds is to familiarize you with the rules of the 
experiment and the computer interface. Note well that for the purpose of the practice rounds, 
you will be paired with a different person from the actual experiment. 

 

Thank you for your participation  

  

Wait Treatment - Instructions Sheet 
Welcome 

The experiment in which you will participate involves the study of decision-making. If 
you follow the instructions carefully and make wise decisions, you may earn a considerable 
amount of money. Your earnings depend on your decisions. All of your decisions will remain 
anonymous and will be collected through a computer network. Your choices are to be made at 
the computer at which you are seated. Your earnings will be revealed to you as they 
accumulate during the course of the experiment. Your total earnings from the experiment will 
be paid to you, in cash, at the end of the experiment.   

You are requested not to talk to one another at any time during the experiment. If you have 
any questions, raise your hand and a monitor will assist you. It is important that you 
understand the instructions. Misunderstandings can result in lower earnings. Finally, we ask 
that even after the experiment is over you not discuss the details of this experiment with 
anyone.  

There are several experiments of the same type taking place at the same time in this room.  

This experiment consists of 60 rounds. You will be paired with another anonymous 
person. This person will remain the same for all 60 rounds.  
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Your information 

At the beginning of each round, you and the person with whom you are paired each 
receives a randomly drawn number between 1 and 5 inclusive. You will see your number, and 
learn the other person's number only after the round ends.  

Decision Stage 1 

After you've seen your number and the other person has seen his number, each of you must 
decide separately between one of three actions: enter, exit or wait.  

Decision Stage 2 

If you choose to wait in stage 1 and the other person chooses to enter or exit, you will see 
his decision after stage 1 ends. Then in stage 2 you must decide between one of two actions: 
enter or exit. 

If you choose to enter or exit in stage 1 and the other person chooses to wait, he will see 
your decision after stage 1 ends. Then in stage 2 the other person must decide between one of 
two actions: enter or exit. 

If you both choose to wait in stage 1, in stage 2 each of you must decide separately 
between one of two actions: enter or exit. 

In other words, each person must ultimately decide whether to enter or exit. Each person 
may decide to enter or exit in stage 1 or wait until stage 2 to decide whether to enter or exit 
after observing the other person's decision in stage 1.  

Round Profit 

At the end of each round, your number, your decision, and the other person’s decision 
determine your round profit in the following way.  

- If you both chose to exit (in either stage 1 or stage 2), then you both receive zero points.  

- If you chose to exit (in either stage 1 or stage 2) and the other person chose to enter (in 
either stage 1 or stage 2), then you receive zero points and the other person receives points 
equal to his number.  

- If you chose to enter (in either stage 1 or stage 2) and the other person chose to exit (in stage 
1 or stage 2), you receive points equal to your number and the other person receives zero 
points.  

- If you both chose to enter (in stage 1 or stage 2), then you receive points equal to one-third 
of your number and the other person receives points equal to one-third of his number.  

The table below summarizes the payoff structure. Suppose you receive a number, x, and the 
other person receives a number, y. The round profits for each of the given pair of decisions 
are indicated in the table below. The number preceding the comma refers to your round profit; 
the number after the comma is the other person’s round profit. 

After you have both made your decisions for the round, you will see the amount of points you 
have earned for the round, the other person's number and the other person’s decision. Please 
record these results from each round in your Personal Record Sheets. When you are ready to 
begin the next round, press Continue. 

            Other Person 

  Enter  

(stage 1 or 2) 

Exit 

(stage 1 or 2) 

You 
Enter 

(stage 1 or 2) 
x/3, y/3 x, 0 
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Exit 

(stage 1 or 2) 
0, y 0, 0 

 

Total Payment 

Each round follows this same sequence of events. At the end of the experiment, you will 
be paid your accumulated earnings from the experiment in cash. Each point earned in the 
experiment is equivalent to 0.9 shekels. While the earnings are being counted, you will be 
prompted to complete a questionnaire.  

Prior to the beginning of the experiment, you will partake in five practice rounds. The 
profits earned in these practice rounds will not be included in your payment. The rules of the 
practice rounds are otherwise identical to those of the experiment in which you will 
participate. The purpose of the practice rounds is to familiarize you with the rules of the 
experiment and the computer interface. Note well that for the purpose of the practice rounds, 
you will be paired with a different person from the actual experiment. 

Thank you for your participation   

 

Sequential  Treatment - Instructions Sheet 
Welcome 

The experiment in which you will participate involves the study of decision-making. If 
you follow the instructions carefully and make wise decisions, you may earn a considerable 
amount of money. Your earnings depend on your decisions. All of your decisions will remain 
anonymous and will be collected through a computer network. Your choices are to be made at 
the computer at which you are seated. Your earnings will be revealed to you as they 
accumulate during the course of the experiment. Your total earnings from the experiment will 
be paid to you, in cash, at the end of the experiment.   

You are requested not to talk to one another at any time during the experiment. If you have 
any questions, raise your hand and a monitor will assist you. It is important that you 
understand the instructions. Misunderstandings can result in lower earnings. Finally, we ask 
that even after the experiment is over you not discuss the details of this experiment with 
anyone.  

There are several experiments of the same type taking place at the same time in this room.  

This experiment consists of 60 rounds. You will be paired with another anonymous 
person. This person will remain the same for all 60 rounds. One of you in the pair will be 
designated Player 1 for the entire 60 rounds of the experiment. The other person will be 
designated Player 2 for all 60 rounds. You will learn whether you are Player 1 or Player 2 as 
soon as the experiment begins before the beginning of round 1. 

Your information 

At the beginning of each round, you and the person with whom you are paired each 
receives a randomly drawn number between 1 and 5 inclusive. You will see your number, and 
learn the other person's number only after the round ends.  

Decision Stage 1 

After you've seen your number and the other person has seen his number, the person who 
is Player 1 must decide between one of two actions: enter or exit.  

Decision Stage 2 
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Player 2 will see Player 1’s decision after stage 1 ends. Then in stage 2 Player 2 must 
decide between one of two actions: enter or exit. 

Round Profit 

At the end of each round, your number, your decision, and the other person’s decision 
determine your round profit in the following way.  

- If you both chose to exit (in your respective stages), then you both receive zero points.  

- If you chose to exit and the other person chose to enter (in your respective stages), then you 
receive zero points and the other person receives points equal to his number.  

- If you chose to enter and the other person chose to exit (in your respective stages), then you 
receive points equal to your number and the other person receives zero points.  

- If you both chose to enter (in your respective stages), then you receive points equal to one-
third of your number and the other person receives points equal to one-third of his number.  

The table below summarizes the payoff structure. Suppose you receive a number, x, and the 
other person receives a number, y. The round profits for each of the given pair of decisions 
are indicated in the table below. The number preceding the comma refers to Player 1’s round 
profit; the number after the comma is Player 2’s round profit. Note that your payoff does not 
depend on whether you are Player 1 or 2. Only your decision, your number and the other 
person’s decision determine your payoff. 

After you have both made your decisions for the round, you will see the amount of points you 
have earned for the round, the other person's number and the other person’s decision. Please 
record these results from each round in your Personal Record Sheets. When you are ready to 
begin the next round, press Continue.  

  Player 2 

  Enter  

(stage 2) 

Exit 

(stage 2) 

Player 1 

Enter 

(stage 1) 
x/3, y/3 x, 0 

Exit 

(stage 1) 
0, y 0, 0 

 

Total Payment 

Each round follows this same sequence of events. At the end of the experiment, you will 
be paid your accumulated earnings from the experiment in cash. Each point earned in the 
experiment is equivalent to 0.9 shekels. While the earnings are being counted, you will be 
prompted to complete a questionnaire.  

Prior to the beginning of the experiment, you will partake in five practice rounds. The 
profits earned in these practice rounds will not be included in your payment. The rules of the 
practice rounds are otherwise identical to those of the experiment in which you will 
participate. The purpose of the practice rounds is to familiarize you with the rules of the 
experiment and the computer interface. Note well that for the purpose of the practice rounds, 
you will be paired with a different person from the actual experiment. 

 

Thank you for your participation   
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