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Abstract

Renewable energy policies address two market externalities at the
same time as they (1) internalize the environmental cost of conven-
tional energy production (GHG emissions and air pollution) and (2)
appropriate earnings from learning-by-doing in the renewable energy
sector.

Theoretical studies attempt to conceptualize the learning-by-doing
gains, and others make some effort to measure the effect of various
policy approaches to promoting renewable energy. This analysis is an
attempt to determine the impact of learning-by-doing effects in the re-
newable electricity generation sector in Ontario on the optimal choice
of policy instruments to promote renewable energy. A Computational
General Equilibrium model is used to assess the social welfare changes
associated with the introduction of a renewable portfolio standard, a
subsidy on renewable electricity and a feed-in tariff. The results indi-
cate that the Ontario feed-in tariff program represents the least cost
policy option both with and without learning-by-doing.

∗The usual disclaimer applies. This research was funded by Sustainable Prosperity.
Early stage data and model development was supported by Environment Canada.
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1 Introduction

The promotion of renewable energy and other ’green technologies’ is a pop-
ular policy instrument mainly used to lower greenhouse gas (GHG) emis-
sions and reduce other environmental stresses like air pollution. Yet policy
interventions to increase output from these young industries generate a dif-
ferent kind of additional welfare benefits. They ensure that learning effects
within the renewable energy sector are adequately compensated. As the ex-
perience of equipment manufacturers, project developers and site operators
grows with rising output, their learning-by-doing triggers reductions in aver-
age or marginal production costs, which may spill over between firms and into
other sectors of the economy or across borders. Such learning externalities
can commonly not be appropriated by the actors investing in technological
innovations, which means that economy-wide investment in renewable energy
remains below the optimal level that would be achieved taking all environ-
mental and learning externalities into account. Hence, both environmental
and the“other” benefits of renewable energy policies need to be considered
when assessing the cost effectiveness of renewable energy policies.

Over the last decade, a large number of studies debated scope and causes
of learning externalities in innovative energy industries including offshore
wind power (van der Zwaan, Rivera-Tinoco, Lensink, and van der Oost-
erkamp 2012), photovoltaics (Wand and Leuthold 2011), clean coal (Nakata,
Sato, Wang, Kusunoki, and Furubayashi 2011), and CCS (Li, Zhang, Gao,
and Jin 2012). These studies commonly explain the occurrence of cost re-
ductions and quality improvements with increasing output by reference to
learning or experience curve models, economies of scale, spill-over effects
from research and development (R&D) or declining input factor prices. Most
studies conclude that the benefits come from multiple possible sources.

This analysis employs a recursively dynamic computable general equilib-
rium (CGE) model of the Canadian economy to determine whether including
the economic benefits related to learning-by-doing changes the order of eco-
nomic preferability of three different renewable electricity policies: a subsidy,
the Ontario feed-in-tariff, and renewable electricity performance standards.
Two model runs are produced for each policy scenario, one including and one
excluding learning-by doing effects on electricity generation costs. The same
target share of electricity generation from renewable sources is assumed in
all scenarios. The results indicate that the policy ranking is the same with
and without learning-by-doing. The Ontario feed-in-tariff is the econom-
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ically least costly policy, followed by the subsidy for renewable electricity
production and lastly, the renewable portfolio standard.

The organization of the remainder of this paper is as follows. Section 2
discusses what will be called ‘learning externalities’ that are associated with
increasing the level of output of some specific sector. Section 3 identifies
a range of possible approaches to the modelling of such learning-by-doing
effects. The focus will be the renewable energy sector, but the same general
principles will apply to other industries as well. Section 4 presents a brief
selective survey of the relevant literature on modelling learning-by-doing in
CGE models. Section 5 then briefly describes the features of the model used
to assess learning-by-doing impacts. Section 6 reviews illustrative findings
with one CGE model formulation.

2 Learning Externalities

2.1 Learning vs. Scale Effects

Increasing output in a specific sector may generate benefits in the form of
average or marginal cost reductions due to scale effects and learning effects
as accumulating experience can cause endogenous improvements in factor
productivity and/or quality. Neij, per Dannemand Anderson, Durstewitz,
Helby, Hoppe-Kilpper, and Morthorst (2003) distinguish between three dif-
ferent sources of experience-based learning:

• Learning through R&D. Knowledge from growing experience may feed
back into the technology design process.

• Learning through manufacturing. Accumulated experience in equip-
ment manufacturing may lead to process improvements in purchasing,
production, distribution etc., which may cause manufacturing costs to
drop.

• Learning from utilization. This type of learning occurs, for exam-
ple, when workers become more skilled in handling specific equipment,
which reduces maintenance cost and down times.

Scale-based cost reductions can also have different sources as outlined by
Junginger, Faaij, and Turkenburg (2005):
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• Mass production. Standardization of the product allows for expansion
of production facilities, which may reduce the cost of each unit. In the
renewable energy sector, one can think of two scale effects at different
points in the value chain. For example, the mass production of wind
turbines decreases the per unit production costs. Additionally, the
cost of wind electricity generation declines as the size of wind farms
increases.

• Product redesign. For example, increasing the size of the individual
wind turbine also leads to lower specific costs per turbine.

In this analysis, the term learning-by-doing is understood in a wide sense, en-
compassing endogenous improvements in production factor efficiency driven
by increased output.

2.2 Learning Externalities

As alluded to above, gains from learning and scaling can occur at multiple
points in the renewable energy value chain, including the equipment manu-
facturing stage, the installation stage and the electricity production stage. At
all stages, benefits may be restricted to the specific firm, sector and country
experiencing the growth in production output or they may spill over to other
firms, sectors and countries. Such spill-over effects constitute a market failure
as inappropriable knowledge externalities incentivize firms to free ride and
delay investment in novel technologies in order to benefit from others’ expe-
riences. Hence, renewable energy policies such as subsidies and feed-in tariffs
aiming at creating a sizable market for renewable energies may be welfare-
enhancingeven independent of avoided environmental externalities. Peters,
Schneider, Griesshaber, and Hoffmann (2012) find evidence of significant
cross-border spill-over effects of so-called demand-pull policies in the case
of solar photovoltaic technology. In particular, their findings indicate that
observed market growth is the same for domestic and foreign demand-pull
policies, suggesting a need for supranational renewable energy policy coordi-
nation. However, Peters, Schneider, Griesshaber, and Hoffmann (2012) use
patents as an indicator of innovation, which does not necessarily reflect the
full cross-border impact of endogenous technological change due to learning
and scale effects. In terms of choice of policy instruments, Gans (2012) shows
that carbon pricing as stand-alone policy is insufficient to achieve learning
benefits in renewable energy industries. Similarly, Chen and Khanna (2012)
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study cost developments in the US corn ethanol industry since 1983 and the
results indicate that policies aiming at increasing the output in infant in-
dustries can be effective in generating cost reductions and overcoming the
market failure related to learning externalities. In contrast, policies aiming
at increasing input prices, e.g. a carbon tax, as a means to foster innovation
are found to be less effective. Complementary targeted policies are required.
While not specifically looking at the renewable energy industry, the analysis
by Melitz (2005) is still relevant when discussing the learning effects of pol-
icy market interventions. Melitz (2005) develops a model of infant industry
protection to assess the welfare impacts of domestic production subsidies,
tariffs and import quotas. He finds that the choice of adequate instruments
is partly dependent on the industry’s learning potential. Contrasting these
studies are the conclusions drawn by Wand and Leuthold (2011) who find
that learning benefits in the solar PV industry are largely occurring at the
global scale with domestic policies for renewable energy promotion playing
only a minor role.

2.3 Methodological Issues

There exists controversy in the literature concerning the factors contributing
to learning externalities in renewable energy sectors and the methodologies
used for disaggregating empirical cost data (Neij 2008). Many analyses at-
tribute only part of the observed cost reductions to endogenous factors such
as learning and scaling driven by volume growth (Nemet 2006). Other, ex-
ogenous factors deemed important in driving changes are public R&D invest-
ment, factor price changes and exogenous technological change (Söderholm
and Sundqvist 2007). These factors can reinforce or offset gains from grow-
ing experience levels van der Zwaan, Rivera-Tinoco, Lensink, and van der
Oosterkamp (2012). The relative contributions of different factors are likely
to change over the life time of a technology. In particular, the potential for
learning is higher at early development stages and decreases as the technol-
ogy matures. At this point, scale effects due to mass production are more
likely to become the key driver of cost reductions (Junginger, Faaij, and
Turkenburg 2005). High marginal returns on increases in production in a
technology’s early development stages play an important role in achieving
competitiveness with incumbent technologies. Hence, policies aiming at in-
ternalizing these large learning externalities can leverage significant welfare
improvements.
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3 Modelling Learning Externalities

3.1 Experience curves

Endogenous improvements in productivity and factor quality are typically
formalized through experience curve models, which are specified as logarith-
mic relations linking the percentage increase in output and the resultant
percentage fall in average or marginal cost. Depending on whether learning
occurs at the equipment manufacturing, installation or electricity generation,
experience levels are commonly either approximated by produced capacity,
installed capacity or by cumulative electricity produced respectively. Costs
are commonly measured in $/ kW produced or $/ kWh generated. However,
definition of experience and cost measures is not trivial. Neij, per Danne-
mand Anderson, Durstewitz, Helby, Hoppe-Kilpper, and Morthorst (2003)
emphasize that the different experience and cost measures relate to different
types of learning outlined above. For example, they claim that learning by
using will not be reflected in the experience curve when equipment cost are
chosen as the dependent variable. In order to account for learning-by-using
effects the correct measure would be the actual production cost of electric-
ity generated from wind. Consequently, as also pointed out by Junginger,
Faaij, and Turkenburg (2005), experience curves based on varying measures
of experience and costs are not comparable.

Traditional learning curves are one-factor models. They subsume all fac-
tors contributing to cost reductions over time in one parameter, the learning
rate as a function of cumulative experience. However, given the uncertain-
ties around the sources of industrial benefits, this approach is likely to lead
to biased interpretations. Hence, some recent studies develop two- or multi-
factor models to address to provide a more disaggregate and accurate picture
of the causes of declining costs. Two-factor models commonly include public
R&D investment as additional independent variable (Yeh and Rubin 2012).
Söderholm and Sundqvist (2007) develop a four-factor model to explain in-
vestment cost developments in wind sector of four European countries by
additionally considering scale effects and feed-in tariff prices. The latter is
expected to counter cost reductions as it makes less efficient sites more at-
tractive and generally lowers competition and thus the incentive to innovate.
Some studies include a time trend to account for cost reductions due to
exogenous technological progress that is independent of cumulative output
(Ferioli and van der Zwaan 2009). With every added variable, the omitted
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variable bias becomes less distorting. However, multi-factor models require
detailed data which may not be available in many cases. This is why McDon-
ald and Schrattenholzer (2001) questions the added value of separating the
two endogenous factors, learning and scaling, in long-term energy models.

This discussion already indicates that estimated learning rates tend to
vary significantly across studies, depending on the used data set and model
specifications (Söderholm and Sundqvist 2007). Table 1 provides an overview
of recent studies on cost reductions in the wind energy sector. Learning
rate range between 1.77% and 19%. The wide range can be explained by
differences in time periods and geographies, the degree of disaggregation of
cost drivers and the ways in which cost and experience are measured.

3.2 Using Experience Curves in General Equilibrium
Models

The discussion so far has been centred on the empirical construction of expe-
rience curves and determination of the learning rate. Focus will now shift on
the use of experience curves in larger economic equilibrium models as a way
to incorporate the effects of endogenous technological change. Such equilib-
rium models are commonly used to assess the welfare impacts of renewable
energy policies. In particular, decisions on how to include learning-by-doing
into the wider model will determine the choice of adequate learning rates.
Key choices on how to model learning benefits can be broadly divided into
two groups. One set of choices relates to the source of learning benefits while
the other one relates to their assumed scope.

Source of benefits The decision is whether to disaggregate of endogenous
cost reductions into those due to learning effects and those due to
scaling effects. The used learning rate needs to be chosen accordingly,
i.e. it needs to reflect the same level of aggregation.

Nature of benefits Mechanisms to be considered include those where the
benefits take the form of efficiency improvements (more output from a
given quantity and quality of inputs) and those that involve improved
factor quality. Both kinds of benefits could alternatively be thought of
as increasing returns to scale in historical sectoral output. This inter-
pretation is consistent with one of the efficiency or quality mechanism.
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Table 1: Reported Learning Rates

Study Scope LR Cost/Experience Factors included
Ek and Söderholm
(2010)

Wind, Europe,
1986-2002

17% investment
cost/global in-
stalled capacity

public R&D with
lbs rate of 20%

Qiu and Anadon
(2012)

Wind, China,
2003-2007

4.1-
4.3%

electricity
cost/national
installed capacity

lbd and lbs of man-
ufacturers and de-
velopers; excluding
scale effects

van der Zwaan,
Rivera-Tinoco,
Lensink, and
van der Oost-
erkamp (2012)

Offshore Wind,
Europe, 2005-
2011

3% 1 investment
cost/European
installed capacity

scale and learning
effects

Söderholm and
Sundqvist (2007)

Wind, Europe 1.77-
8.25%

investement
cost/European
installed capacity

scale and R&D and
policy effects

Junginger, Faaij,
and Turkenburg
(2005)

Wind, global,
1990-2001

18-19% investment
cost/national
installed capacity

scale and learning
effects

Neij, per Danne-
mand Anderson,
Durstewitz, Helby,
Hoppe-Kilpper,
and Morthorst
(2003)

Wind, Den-
mark, 1981-
2000

17% generation
cost/national
production

scale and learning
effects
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Electricity vs. equipment Learning-by-doing can occur at different lev-
els in the renewable energy value chain. The literature distinguishes
between learning-by-doing in equipment production, installation, and
electricity generation. Empirical learning rates will differ across stages.

Reference levels It is important to determine the relevant reference point
for these curves: Is it the global level of output, is it national levels
of output or here in the case of a Canadian regional model, is it, for
example the level of output in the province. Needless to say if the latter
definition of the reference level of output is used, the gains from moving
down the learning or experience curve are likely to be dramatically
higher than if the relevant reference level is global or even national
output.

Another set of modelling choices relates to assumptions on the scope or
reach learning externalities. To what extent are learning benefits assumed
to be restricted to the country, sector, and firm where the increase in out-
put occurred? Is learning assumed to be linked to individual machines and
workers?

Embodied versus non-embodied Productivity gains could be embodied
or non-embodied. This distinction was first introduced by Rosenberg
(1982). If, for example, newer equipment is becoming more efficient due
to design modifications based on learning-by-using, the new equipment
can be said to embody the technological improvement. Likewise, if spe-
cific workers are more productive as a result of producing large outputs,
their learning would be considered embodied in that factor (labour).
Disembodied benefits, by contrast, are related to improved general,
shared knowledge about how to use the technology most productively.
This knowledge may, for example, be documented in manuals or best
practice guidelines but it is not physically embodied in either capital
factors (technology hardware) or labour factors (skilled workers). In
modelling terms, embodied learning changes the efficiency of input fac-
tors, while disembodied learning causes alterations in the production
function itself. In their study on cost reductions in the Chinese wind
power sector, Qiu and Anadon (2012) find evidence that most learn-
ing took place at the inter-firm rather than the intra-firm level, which
implicitly assumes either high degrees of capital and labour mobility
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between firms or a relatively large share of disembodied rather than
embodied industrial benefits.

Factor specificity Productivity gains from accumulated experience could
be associated with one factor or another, most importantly capital or
labour, or they could be neutral across all factors.

Sector-specificity If output increases cause factors to be more productive,
they may be more productive only in the sector where the learning has
accrued, or the benefits could spill-over into other industries. In the
case of labour, the (embodied) skills learned by specific workers could
apply to just the sector where the worker learned them, or they might
be more generally applicable, in which case the worker would take them
her when moving between sectors. None of the studies reviewed here,
explicitly discusses inter-sectoral spillover effects.

Geographic specificity Similarly to learning externalities across sectors,
the extent of industrial benefits can be local, regional, national or global
in scope. Of the studies included in the selected survey in table 1, only
Ek and Söderholm (2010) measure experience levels in terms of installed
capacity worldwide as opposed to nationally. While not formally mod-
elling cross-border spillover effects in their analysis, Qiu and Anadon
(2012) recognize that the learning rate they identified for the Chinese
wind industry may be lower than those reported in previous studies for
the U.S. and Europe as the Chinese wind industry already benefited
from previous learning gains achieved in these regions.

4 Selective Survey

Having introduced key modelling issues that arise when incorporating en-
dogenous industrial benefits into economic equilibrium models, in this sec-
tion three recent Computable General Equilibrium (CGE) studies containing
experience curves will be discussed. The inclusion of experience curves into
climate policy models is generally more common in bottom-up energy system
models than in general equilibrium models, which makes these studies par-
ticularly relevant to this discussion. The three studies vary in their choices of
modelling options identified above. Reichenbach and Requate (2011) assess
policy options in renewable energy markets with learning by doing spill overs
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and imperfect competition. Rasmussen (2001) investigates the impact of en-
dogenous technological change on the cost of CO2 abatement in Denmark.
Schumacher and Kohlhaas (2007) analyse alternative approaches to mod-
elling learning by doing in the German renewable energy sector and EU-wide
spill over effects.

Comparing the studies’ varying approaches, the following observations
are particularly interesting:

• (Rasmussen 2001) focuses on industry benefits in the production sec-
tor for renewable energy equipment, whereas Schumacher and Kohlhaas
(2007) alternatively also examine learning by doing effects in the re-
newable energy generation sector. Reichenbach and Requate (2011)
consider both upstream and downstream learning by doing.

• All three studies define efficiency increases due to technology change as
the source of cost reductions. The potential for additional scale effects
occurring at the same time is not explored - at least not explicitly.

• None of the three selected studies considers economy wide spill over ef-
fects, however, Schumacher and Kohlhaas (2007) examine cross-border
benefits within the renewable energy industries in the European Union.

• Only Schumacher and Kohlhaas (2007) explicitly assume learning by
doing to improve the efficiency of labour and capital at the same time.
Reichenbach and Requate (2011) define learning by doing as occurring
at the firm level without further specification. Rasmussen (2001) as-
sumes the cost of a unit of renewable energy capital to decline over
time due to intertemporal learning by doing spillovers.

• Rasmussen (2001) explicitly mentions that efficiency improvements due
to endogenous technological change only apply to new vintages of cap-
ital, emphasizing that learning by doing benefits are embodied. Schu-
macher and Kohlhaas (2007) also assume productivity improvements
embodied in capital but consider them non-embodied for all other in-
put factors. Reichenbach and Requate (2011) model learning spill-overs
between firms occurring from one period to the next, independent of
new capital investment, which indicates that non-embodied productiv-
ity gains.
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Finally, none of the discussed studies considered models spillover benefits
in the simplest way which is to assume that they are factor-neutral, non-
embodied, and sector specific.

5 The Model

FiT-rd is a recursive dynamic multi-region CGE model of the Canadian econ-
omy. It is designed to simulate immediate and transitional economic impacts
of different climate policy scenarios including renewable energy quotas and
feed-in tariffs. In particular, the recursive dynamic character of FiT-rd means
that in each period, the representative consumer makes an investment deci-
sion based on rates of return in the current period. One period’s purchases
of investment goods causes the capital stock to increase the next period. The
capital is subsequently allocated among sectors to equalize rates of return.
The model’s agents can be considered myopic, since there is no mechanism
whereby anticipation of future expected events can affect current behaviour.

The following subsection describes the model and the data sources used.

5.1 Production

Nested constant-elasticity-of-substitution (CES) production functions are used
to model firms’ input choices regarding the key production factors capital,
labour and a nested aggregate of all other inputs such as energy and ma-
terial. For renewable energy firms an additional fixed factor is considered,
which represents the finite availability of renewable energy sites in each pe-
riod. Because the supply of this factor is fixed, the supply curve of the
renewable electricity sector is upward sloping in each period.

Firms produce a composite of goods for domestic consumption (that is
consumption within the province as well as export within Canada) as well as
goods for export.

5.1.1 Electricity

The electricity sector is composed of two sectors, the renewable generating
sector and the conventional generating sector. The sectors are technologically
similar with key differences. First the renewable sector has dramatically lower

12



input shares of fossil fuels. The conventional generators generate conventional
electricity, whereas the renewable sector generates renewable electricity.

In the case of the conventional sector, the output includes some for do-
mestic markets and some for export. By contrast, the renewable electricity
sector produces only electricity for Canadian markets.

The renewable and conventional electricity produced in a given region
are combined in a CES aggregate to produce the electricity used in final and
intermediate demands in the home region and other regions of Canada. As
mentioned above, the elasticity of substitution is denoted σcr. The default
value used for this elasticity is 0.5 and it is assumed to be constant over the
entire horizon considered.

5.2 Factor Markets

Three primary factors of production are distinguished: capital, labour, and
specific resources. Capital is assumed to be both region and sector specific.
This allows the capital stock of a specific sector in a specific region to ac-
cumulate (or fall) over time. Labour is considered mobile between sectors
within a province, but immobile between provinces.2 To determine total
labour supply, each household is assumed to trade off between leisure and
consumption. Although the model allows for the determination of equilib-
rium unemployment by either a wage curve formulation or a rigid real wage
formulation, all scenarios presented in this paper assume full employment in
all periods.

5.3 Government and Taxation

Government spending by all levels of government is fixed at baseline levels
in all experiments considered. All revenues (federal and provincial) accrue to
the province’s representative agent, and that agent purchases the fixed bundle
of government services. These services do not enter into the representative
agent’s preferences.

The net deficit or surplus of the public sector in each province will only
change to the extent that factor and input taxes change in response to the
policy under consideration. Any policy-induced public expenditures, as in

2Although the model structure allows for some labour mobility between provinces, this
aspect of the model was not active in any of these scenarios.
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the case of subsidies to renewable energy, are financed by a corresponding
increase in labour taxes. In the case of the feed-in tariff, a tax on all electricity
consumption is set in such a way as to finance the feed-in-tariff paid on
renewable production. In the case of the renewable portfolio standard, the
policy costs are born entirely by the private sector.

5.4 Investment Demand

In FiT-rd the overall level of investment in a given period responds to average
rates of return with a constant elasticity formulation. Higher average rates of
return in a given period lead to higher levels of investment in the subsequent
period. The default value of the parameter is εi is 1

2
.

Total investment in a region is allocated among those sectors with the
highest rates of return.

5.5 Consumer demand

Household consumption is modeled in a rather aggregate fashion as distribu-
tional impacts are not the focus of this analysis. One representative agent in
each province receives all factor income as well as government transfers. The
net transfer to the representative agent equals the difference between total
federal and provincial taxes collected and the level of purchases of govern-
ment services which is fixed in each period. Given their budget constraints,
the representative agents maximize utility given their preferences over a CES
bundle of consumption goods and leisure.

5.6 International and inter-provincial trade

FiT-rd allows for bilateral trade among the provinces and with the rest of
world following the Armington (1969) approach. According to this approach,
domestic goods and imports from the rest of the world are nested in a CES
function.

A given region consumes a composite of goods produced in Canada and
goods from the rest of world. Domestic goods are a CES aggregate of goods
produced in the home province and goods imported from other provinces.
This domestic goods composite is substitutable for goods from the rest of
world. The elasticity of substitution among domestic sourced goods is 3,
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whereas the elasticity of substitution between the domestic composite and
rest of world goods is 6.

Canada is assumed to be a price taker on the global market for both ex-
ports and imports, whereas relative prices between provinces are determined
endogenously. An elasticity of transformation function is used to specify the
ease with which Canadian goods can be transformed into exportable goods
versus those for the domestic (Canadian) market. The assumed elasticity of
transformation is 1. Each region’s balance of trade is fixed in real terms in
each period. This ensures that the trade surplus or deficit in each province,
and therefore total net foreign saving in Canada, remains fixed at a bench-
mark level.

5.7 Data

The model is calibrated to the economic transactions (quantities and prices)
in a benchmark year as compiled in Statistic Canada’s symmetric provincial
input-output tables for the year 2005. The benchmark set includes data
from the IO tables on production, intermediate use, final demands, sectoral
capital earnings and sectoral expenditures on wages and salaries as well as
information on inter-provincial and international trade flows.

Since renewable energy technologies are not differentiated from conven-
tional technologies in the Statistics Canada provincial IO data, Natural Re-
sources Canada data on electricity generating, consumption and trade was
used to disaggregate the utilities sector as far as production and trade. Once
electricity generating was split from utilities, the split between renewable and
conventional electricity for the benchmark year was done using extraneous
data from NRCan and other sources3 The factor intensity of the renewable
electricity sector was calibrated using information provided in Wing (2008)4.

6 Simulation assumptions

6.1 Baseline

The model was solved for the years 2010–2050 in five year increments.

3Further detail available on request.
4The estimates provided are based on cost and technology information on 18 different

electricity generation technologies is provided by the US Environmental Protection Agency.
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The model is first calibrated to an artificially generated baseline with
exogenous consensus provincial growth rates. In the baseline, assumptions
on the penetration of total renewable electricity in Ontario are based on
projections to 2030 by the National Energy Board (National Energy Board
2011).

Renewable electricity is assumed to remain a constant share of the market
after the end of the NEB forecast. There is some uncertainty about what is
included in the baseline, since the baseline is national in scope. For Ontario,
it would seem to exclude impacts of the Green Energy and Economy Act.
We are interpreting the baseline as excluding this policy measure.

The baseline forecasts are interpreted as including not just the impact of
bau policies, but, when learning by doing is present in the model, also the
learning effects related to the bau level of output associated with these poli-
cies. Hence, the policy simulations only measure additional learning effects
generated by the additionally introduced policies.

6.2 Key Modelling Parameters

The analysis is focused on learning-by-doing effects in electricity generation
from renewable sources. Renewable energy technologies include relatively
young and still innovative technologies such as wind, solar, geothermal and
small hydro.

Our central case learning rate is 5%. The relevant cumulative output
is the renewable electricity generated in Ontario. The representation used
assumes that the learning by doing results in a factor-neutral technological
improvement that is not embodied in any factor.

ct = ct−1

(
Yt
Yt−1

)−γ

The other key parameter is the elasticity of substitution between con-
ventional and renewable electricity sources. A value of 1 indicates that a
change in the relative prices of renewable and conventional electricity will
cause proportional changes in the relative production volumes. This implies
that there is no cost to switching back and forth between the two. Values
below 1 assume that electricity from renewable sources is an imperfect sub-
stitute and the lower the elasticity value the greater the cost of switching.
Likely barriers to substitution include, for example, technological problems
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as grids and storage capacities are not compatible with the lower reliability
and greater fluctuation in electricity supply from renewable sources. The
elasticity of substitution is set to 0.5.

7 Results

7.1 Simulations

The environmental target assumed in all three policy scenarios is to double
the share of electricity from renewable sources relative to the baseline in each
period. Three policy scenarios are considered.

Renewable Portfolio Standards (rps) In this scenario electricity gener-
ators are required to produce the target share of electricity from re-
newable sources without financial support from the government.

Subsidy (sub) The government guarantees electricity producers subsidies
that cover the cost of renewable electricity generation to meet the target
share. The subsidy is financed through a labour tax increase.

Ontario Feed-in-Tariff (ofit) In this scenario, the subsidy is financed through
a general tax on all domestic consumption of electricity within Ontario.

All scenarios are run twice, one time with learning-by-doing, and one time
without it. This allows for comparing the economic impacts of including en-
dogenous learning effects on renewable electricity generation volumes, social
welfare, etc.

In all of our tables, we use the percentage change in consumption as a
welfare measure. Since government spending is fixed at the baseline level
in all the experiments. The change in consumption reflects the change in
income resulting from changed returns on investment over the period.

7.2 Central Case (Overview)

Table 2 shows our central case welfare results, showing the welfare summary
for both the central case (with learning) and without learning. The target
of doubling the market share of renew ables is a strict target in 2050, as the
penetration of renewables rises to 28% of total generation.
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One regular feature of the consumption effects in all of our runs (including
all sensitivity runs) is the ranking of the three policy instruments. The
ofit policy has the lowest social cost among the three considered, followed
(often closely) by the subsidy and trailed by the rps approach, often by a
considerable amount. In our central case results, the consumption losses
under ofit are modest (less than .5% of GRP5) the subsidy approach is only
slightly more costly, with 2050 consumption losses just over .5%. The rps
losses are significantly higher at almost 2%. The other finding is that, with
the otherwise identical parameter settings, the presence or absence of learning
by doing has a relatively modest impact on consumption relative to the choice
of instrument used to promote renewable energy.

The policy instruments differ in two key respects: 1. their coverage (or
base) and 2. the way that they are implicitly financed.The subsidy is pro-
vided only to renewable generators, with no direct impact on conventional
electricity producers. The subsidy is paid for through a tax on labour income.
The feed-in tariff involves a subsidy paid to renewable generators, plus a con-
sumption tax on all electricity (renewable and conventional). This tax is set
high enough to finance the subsidy, so the ofit policy is essentially financed
by a tax on electricity consumption. The renewable portfolio standard is
self-financed by the electricity sector. That is, the conventional generators
profits have to cross subsidize the losses associated with their share of the
renewable sector. This differs from the previous two cases because the policy
is based on production rather than consumption.

7.2.1 Factor Markets

An overview of the factor market results is presented in Table 3. The subsidy
to renewable electricity causes real wages6 to fall and the rental rate to rise.
This is in part because electricity generation is capital intensive in both
the renewable and conventional generating sectors. The subsidy is financed
through a tax on labour, further depressing real wages.

There is an aspect of both the rps and ofit instruments which works
against the conventional sector and in favour of renewables. The rps has a
more profound negative effect on both real wages and the real rental rate7

5Gross Regional Product
6Real wages are reported as the percentage change in the net of income tax purchasing

power of wages.
7The rental rate is measured in real terms (what could be bought with the rental rate.
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because it has a broader base than the ofit.
In the case of the ofit and rps the change in investment has the same sign

as the change in rental rate. Reductions in the rental rate reduce investment.
With the subsidy, the rental rate goes up a small amount (under .25%), but
this isn’t enough to increase investment. The impact of the reduction in
funds available to invest offsets the rather small increase in rental rates.

7.2.2 Electricity Market

Although all the policy instruments used achieve the same target rate of
renewable to total generation, the target is achieved dramatically differently
using the different instruments. With the subsidy, the total production of all
electricity rises by 20% relative to baseline by 2050. Renewable generation
rises by over 140%.

Under the ofit, total electricity production rises by about 2%, but in this
case, conventional generation falls by over 14%, with renewable generation
rising by just over 100%.

With the rps, the total production of electricity falls by 50%. In this case,
the increased share of renewable electricity is being brought about by a large
reduction in the production of conventional electricity. Even the renewable
production falls relative to baseline. This result emphasizes the importance
of trade under the rps. The rps raises the production cost of electricity in
Ontario, but the export market is quite elastic, leading to a dramatic response
in exports.

Percentage changes are reported relative to the baseline value.
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Table 2: Welfare (%) Central Case

Learning
2010 2015 2020 2025 2030 2035 2040 2045 2050

ofit -0.07 -0.11 -0.16 -0.20 -0.25 -0.31 -0.38 -0.38 -0.38
rps -0.25 -0.46 -0.67 -0.91 -1.19 -1.52 -1.95 -1.97 -1.98
sub -0.10 -0.16 -0.23 -0.31 -0.39 -0.49 -0.62 -0.62 -0.61

No Learning
2010 2015 2020 2025 2030 2035 2040 2045 2050

ofit -0.07 -0.12 -0.18 -0.24 -0.30 -0.36 -0.45 -0.45 -0.45
rps -0.25 -0.47 -0.71 -0.97 -1.26 -1.60 -2.02 -2.02 -2.02
sub -0.10 -0.18 -0.26 -0.35 -0.45 -0.57 -0.72 -0.72 -0.72

Table 3: Factor Market Summary (%) Central Case

Wages (%)
2010 2015 2020 2025 2030 2035 2040 2045 2050

ofit -0.06 -0.10 -0.14 -0.18 -0.23 -0.28 -0.35 -0.34 -0.34
rps -0.49 -0.84 -1.13 -1.44 -1.76 -2.09 -2.49 -2.50 -2.51
sub -0.10 -0.17 -0.24 -0.32 -0.41 -0.51 -0.65 -0.64 -0.64

Rental Rate (%)
ofit -0.11 -0.19 -0.25 -0.32 -0.40 -0.48 -0.58 -0.57 -0.57
rps -0.77 -1.25 -1.62 -1.95 -2.08 -2.19 -2.28 -2.28 -2.28
sub 0.06 0.08 0.12 0.15 0.18 0.21 0.24 0.24 0.25

Investment (%)
ofit -0.04 -0.06 -0.08 -0.10 -0.13 -0.15 -0.18 -0.18 -0.18
rps -0.24 -0.38 -0.49 -0.59 -0.59 -0.59 -0.57 -0.57 -0.56
sub 0.00 -0.01 -0.01 -0.01 -0.02 -0.02 -0.03 -0.03 -0.03

20



Table 4: Electricity Market Summary (%) Central Case

Renewable Production (%)
2010 2015 2020 2025 2030 2035 2040 2045 2050

ofit 100.4 100.9 101.5 102.2 102.9 103.5 104.3 104.3 104.3
rps 81.4 67.8 54.9 40.3 28.0 14.4 -2.5 -3.4 -4.0
sub 106.8 111.2 116.0 121.2 127.0 133.4 141.3 141.3 141.3

Conventional Production (%)
2010 2015 2020 2025 2030 2035 2040 2045 2050

ofit -2.9 -4.6 -6.3 -8.1 -10.1 -12.1 -14.4 -14.4 -14.4
rps -12.1 -20.3 -28.0 -36.3 -43.2 -50.6 -59.2 -59.5 -59.8
sub 0.2 0.3 0.4 0.5 0.6 0.8 1.0 1.0 1.0
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7.3 High Case

We also considered a case with high potential for learning by doing gains in
the renewable electricity sector. In this case, renewable electricity is more
easily substitutable for conventional electricity and the learning rate is higher.
The results are summarized as before in Table 5 (Welfare) and 6.

The qualitative findings are similar. The Ontario feed-in tariff is the
lowest cost way of achieving the stated target, with the subsidy close behind.
The factor market impacts have the same pattern, but in almost all cases
the reductions are somewhat lower than in the central case. The exception
is the effect on the rental rate with the subsidy which is the same in the two
formulations.

Table 5: Welfare (%) ‘High’ Case

Learning
2010 2015 2020 2025 2030 2035 2040 2045 2050

ofit -0.05 -0.07 -0.09 -0.11 -0.14 -0.17 -0.20 -0.20 -0.20
rps -0.12 -0.19 -0.26 -0.33 -0.42 -0.52 -0.65 -0.65 -0.65
sub -0.08 -0.11 -0.14 -0.18 -0.23 -0.28 -0.35 -0.35 -0.34

No Learning
2010 2015 2020 2025 2030 2035 2040 2045 2050

ofit -0.05 -0.09 -0.13 -0.18 -0.22 -0.27 -0.33 -0.33 -0.33
rps -0.12 -0.22 -0.32 -0.42 -0.54 -0.67 -0.82 -0.82 -0.82
sub -0.08 -0.14 -0.20 -0.27 -0.35 -0.43 -0.55 -0.55 -0.55

7.4 Relative Impact of Learning

The question of the relative impact of learning by doing under different policy
instruments was also considered. Table 7 presents the reduction in welfare
cost associated with learning under various parameter settings and policies.
In all cases we considered (including some others not reported here) except
one, the biggest percentage reduction in welfare cost comparing the learning
by doing to the non learning by doing case occurred almost always under
ofit. One would expect that the policy with the highest increase in produc-
tion of renewable energy should have the biggest reduction in welfare cost
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Table 6: Factor Market Summary (%) ‘High’ Case

Real Wages (%)
2010 2015 2020 2025 2030 2035 2040 2045 2050

ofit -0.05 -0.07 -0.08 -0.10 -0.12 -0.15 -0.18 -0.18 -0.18
rps -0.23 -0.37 -0.48 -0.61 -0.74 -0.88 -1.05 -1.06 -1.06
lbd -0.08 -0.12 -0.15 -0.20 -0.25 -0.30 -0.38 -0.37 -0.37

Rental Rate (%)
ofit -0.10 -0.14 -0.18 -0.22 -0.27 -0.32 -0.39 -0.38 -0.38
rps -0.39 -0.60 -0.78 -0.96 -1.15 -1.34 -1.55 -1.55 -1.55
sub 0.04 0.07 0.10 0.14 0.17 0.21 0.24 0.24 0.25

Investment (%)
2010 2015 2020 2025 2030 2035 2040 2045 2050

ofit -0.03 -0.05 -0.06 -0.08 -0.09 -0.11 -0.13 -0.13 -0.13
rps -0.12 -0.19 -0.24 -0.30 -0.36 -0.41 -0.48 -0.48 -0.48
sub 0.00 0.00 0.00 0.00 -0.01 -0.01 -0.01 -0.01 -0.01

attributable to the learning. There would seem to be more to the story, since
the increase in renewable electricity production under ofit is not quite as high
as the increase under the subsidy.

Table 7: Relative Reduction in Welfare
Case

Central High Low
ofit 16% 39% 11%
rps 2% 21% 1%
sub 15% 35% 12%

The exception to the general observation that the welfare costs from ofit
are reduced most by learning is in the case with low potential for learning by
doing gains in renewable electricity. In that case the elasticity of substitution
between conventional and renewable electricity is 0.25 and the learning rate
is 5%.
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7.5 Conclusion

The public discussion around the effectiveness and efficiency of the Ontario
Green Energy Act continues, fuelled by critical press coverage and the recent
introduction of Bill 39, which had it not been defeated by the Provincial
government in late April, would have abandoned the feed-in tariff program.
The results of this model simulation indicate that in at least one respect,
the Ontario feed-in tariff program is the preferred choice out of the options
considered. A limited scenario analysis indicates that this top position in
the policy ranking is robust to changes in two key modelling parameters,
the learning rate and the elasticity of substitution between conventional and
renewable electricity. Including learning-by-doing into the model estimations
does not change the order of preference either, but in fact, reinforces it.

Two other conclusions are suggested. First, learning by doing reduces the
cost of expanding renewable energy, but only to the extent that renewable
energy expands relative to baseline as a result of the policy. Second, the
gains associated with the learning by doing mechanism seem to be high (often
highest) with the ofit instrument. As mentioned, this could be because the
increase in output with ofit tends to be relatively high.

A key qualification to our findings is that we do not take account of the
welfare effects associated with reduced emissions. This is often not an issue
with ‘cost-effectiveness’ type of analyses, because they tend to hit a given
environmental target. In our scenarios, although we have a common target,
the pollution damages associated with different policies is likely ot be quite
different.

7.6 Extensions

There are multiple ways in which we plan to extend our analysis.

1. We intend to port the model to the EC-PRO provincial data. This
data includes

• linked greenhouse gas and other air emissions

• replication of a detailed Energy 2020 forecast of the provincial
economies, energy demand and emissions

• better energy supply and pricing detail

• inclusion of margins
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We currently use a common target of the share of renewable electricity
generated. Using the EC-PRO data would permit us to target total
greenhouse gases emitted in the production of electricity.

2. The model identifies all regions of Canada, but our analysis has been
restricted so far to Ontario.

3. A more systematic sensitivity analysis is called for to determine the
relative influence of various model parameters on modeling results in-
cluding the learning rate, the output reference level, elasticities of trans-
formation and funding models.

4. We are looking for better evidence to guide our choice of the learning
parameter. In particular, we have typified the externalities as being
felt within Ontario’s renewable sector, but nowhere else. One of the
specifics issues we are pursuing is the extent to which there are ‘local’
activities where the learning by doing gains can arise. This could help
us understand the appropriateness of alternative learning rates.

5. We also intend to provide more reporting of the trade impacts of this
measure between Ontario and both the other provinces, as well as On-
tario and the rest of world.
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