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1 Introduction

Time series are often temporally aggregated, that is, averages or sums of higher-frequency data,

such as monthly or quarterly averages of daily data. Forecasts of such series, especially when

expressed in real terms, play a key role in expectation formation, central bank projections, and

investment decisions.1 Unfortunately, temporal aggregation may introduce a loss of information

contained in higher-frequency data, making forecasts constructed with temporally aggregated data

inefficient (Zellner and Montmarquette, 1971; Amemiya and Wu, 1972; Tiao, 1972; Wei, 1978;

Kohn, 1982; Lütkepohl, 1986). The main approach to avoid this information loss is the bottom-up

(BU) approach, which consists of computing forecasts for the underlying high-frequency data and

averaging the forecasts ex-post (Zellner and Montmarquette, 1971; Lütkepohl, 1986).2 However, in

practice, forecast and projection models are commonly implemented with averaged data due to the

challenges of altering the frequency of the forecast model.

In this paper, we propose a general method for forecasting temporally aggregated data with

disaggregated observations that allows the forecast model to maintain the same frequency as the

target variable. This method, which we call Period-End-Point Sampling (PEPS), consists of ad-

justing point forecasts constructed with end-of-period observations so that they are equal to the

period average forecast.

A major advantage of PEPS is that it allows forecasters to maintain all variables within the same

lower frequency as the forecasted series. This is often desirable in structural and multivariate mod-

els, which include other variables that are observed only at a lower frequency. In contrast, existing

approaches such as the bottom-up approach or mixed-frequency techniques require introducing the

higher-frequencies into the forecast model. PEPS is straightforward to implement and, in the sim-

plest case, only requires substituting aggregated observations for end-of-period observations when

constructing forecasts.

Using simulation analysis, we find that both the PEPS and BU approaches substantially improve

on the forecasts constructed with averaged data, with up to 46% improvements in the mean-

squared forecast error (MSFE) and directional accuracy at the one-step-ahead prediction. The

1For example, forecasts of average prices might be necessary to accurately predict total costs or revenues. More
generally, average observations more closely reflect average economic conditions over a certain period and are common
in forecasts of real effective exchange rates and quarterly energy prices (see, e.g., Christiano and Eichenbaum, 1987;
Ellwanger and Snudden, 2023b).

2An alternative approach relying on information from higher frequency data is Mixed Data Sampling (MIDAS,
see, e.g. Ghysels et al., 2007; Andreou et al., 2013). The PEPS can be applied in this context, but herein our primary
focus is on recursive forecasts, for which the bottom-up approach is the principle existing method.

1



PEPS forecasts rival the efficiency of bottom up forecasts and work particularly well for monthly

and quarterly data.

In our empirical application, we examine the real-time performance of alternative forecasts

methods for the nominal yield on 10-year U.S. bonds and the real price of copper. For all series, we

find large and robust improvements in forecast accuracy from employing disaggregated approaches

at short horizons. For the one-month-ahead forecast, the MSFEs of the disaggagregated approaches

are up to 45% lower than for forecasts constructed with averaged data, which is unprecedented

in existing forecast applications for these series. Confirming our simulation results, the PEPS

forecasts perform similarly at short horizons and can do better at longer horizons compared to the

BU forecasts. A practical advantage of PEPS is that the data can be backcasted, which can result

in additional forecast improvements at longer forecast horizons.

A key contribution of our analysis is to examine temporal aggregation of daily data. Prior

investigations comparing BU and aggregated approaches have focused on aggregation from monthly

to quarterly or from quarterly to yearly data (see, e.g., Zellner and Montmarquette, 1971; Wei, 1978;

Lütkepohl, 1986; Athanasopoulos et al., 2011). In our simulations and empirical applications, the

loss in forecast accuracy resulting from daily to monthly aggregation is much greater than the loss

resulting from monthly to quarterly aggregation. This occurs because daily-to-monthly aggregation

moves from a state of no aggregation to a substantive aggregation (typically 21 business days). In

contrast, monthly to quarterly aggregations represent additional aggregations of already aggregated

series. As such, using information from daily data results in forecast gains that are much larger

than currently understood.

Our results complement a related body of existing work on the effect of aggregation on forecasts

and the dynamics of economic series (see, e.g., Working, 1960; Brewer, 1973; Weiss, 1984; Rossana

and Seater, 1995; Marcellino, 1999). Theoretical results for ARIMA models show that forecasts

constructed with aggregated time series are less efficient than forecasts constructed with the BU

approach (Amemiya and Wu, 1972; Tiao, 1972; Wei, 1978; Lütkepohl, 1986). This holds even

when accounting for the effect of temporal aggregation on the ARIMA structure (Kohn, 1982) and

under parameter uncertainty (Lütkepohl, 1986). We extend these results by showing that suitably

constructed point forecasts can correct for the information loss from temporal aggregation and can

be as efficient as the BU approach in forecasting averaged series.
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2 Equivalence of Point and Bottom-Up Forecasts

2.1 Point Sampling and Temporal Aggregation

Consider a continuous time series yt,i such that t = 1, 2, . . . , T indicates a lower-frequency period

and i ∈ [0, n] denote sub-periods within the period so that the last observation of period t is yt,n.

For example, this series may represent prices of a continuously traded asset within day i in month t.

In practice, it is common to point-sample and record daily data at a natural time unit, such

as closing values at the end of each day. In this case, yt,i is now discretized such that i takes only

integer values, i = 1, 2, . . . , n, and the first observation of the next period is yt+1,1.
3 In practice,

daily closing prices are the basis of many period average macroeconomic series such exchange rates,

interest rates, and commodity prices.

Consider a forecaster whose objective is to use the information available at the end of period T ,

to predict the k-periods-ahead average observation, ȳT+k. The period-t average is given by

ȳt =
1

n

n∑
i=1

yt,i. (1)

Such period average forecasts are common place in macroeconomics and for investment decisions.

For example, forecasts of average prices might be necessary to accurately predict total costs or

revenues. More generally, average observations more closely reflect average economic conditions

over a certain period and are common in forecasts of effective exchange rates and interest rates

(see, e.g., Meese and Rogoff, 1983; Christiano and Eichenbaum, 1987).

Another way to reduce the frequency of daily observations is point sampling at the period t

frequency. This may consist of recording observations from a specific day i of each month. A point-

sampled series particularly relevant is the series of end-of-period observations, y1,n, y2,n, . . . , yT,n.

For example, asset prices are commonly reported as end of period values, and bilateral exchange

rates are commonly reported as both period average and end-of-period values. In effect, a series

of end-of-period values are observations of daily closing prices that have been sampled by skipping

every n− 1 daily observations.

The form of sampling plays a subtle but critical role in determining the stochastic properties of

the resulting series. In the previous literature, this role has been investigated separately for point

sampling and temporal aggregation. In this paper, we exploit the advantages of selective sampling

3This form of sampling has also been called skip sampling, systematic sampling, point-in-time sampling, or selective
sampling.

3



while maintaining the goal of forecasting period averages.

The first advantage is that relative to period averaging, period-end point sampling tends to

be less distortionary for the original data-generating process. For (V)AR processes, averaging

always introduces an additional MA-component into the process, while this is not necessarily the

case for point sampling (Brewer, 1973; Weiss, 1984; Wei, 1981; Marcellino, 1999). For example,

when the underlying series is generated by a random walk, averaging produces a moving average

process (Working, 1960), while point sampling maintains the random-walk properties at the lower

frequency.

The second advantage, which accrues to point sampling of end-of-period observations, is that

the last observed instantaneous (non-averaged) observation can reflect the full information available

to economic agents at the time the forecast is formed. This property is particularly relevant if the

underlying series has a forward-looking component, such as prices of storable goods and assets, as

famously argued by Fama (1970). Averaging dilutes the latest information contained in the last

observed observation by averaging over past observations containing stale information. As a result,

computations of forecasts with averaged data will generally result in a deterioration in forecast

accuracy, which is not necessarily the case for forecasts computed with point-sampled data (Kohn,

1982).

2.2 Optimal Point Forecasts

The main approach to avoid the information loss in forecasting is the bottom-up (BU) approach,

which consists of computing forecasts for the point sampled daily data and averaging the forecasts

ex-post to the desired period frequency (Zellner and Montmarquette, 1971; Lütkepohl, 1986).

More formally, let ˆ̄yT+k, k = 1, 2, . . . ,K, be the period average forecast of ȳT+k. Let the

model-implied conditional expectations at the end of period T be denoted by ET,n [·]. The BU

forecast constructs a point-in-time forecast, ŷT+k,i, for all days i in forecast period T + k. Then

the period-average forecast is given by the simple average of the daily forecasts. For example, for

the k-period-ahead forecast

ET,n [ȳT+k] =
1

n

n∑
i=1

ŷT+k,i. (2)

We now want to understand the relationship between point forecasts of i within t and the

bottom up forecast, ˆ̄yT+k.

Theorem 1. Let ŷT+k,i be a continuous function on an interval i ∈ [0, n], observed when i takes
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on integer values, i = 1, 2, . . . , n. For n ≥ 2, there always exists at least one point-in-time i∗ in

T + k such that there is a point forecast, ŷT+k,i∗, that is equal to the bottom-up forecast ˆ̄yT+k.

Proof. Assume without loss of generality that ŷT+k,1 and ŷT+k,n are not both the maximum or

both the minimum of ŷT+k,i. If they are, the series is constant, and the average is equal to

ŷT+k,i for every value of i. There exists at least one maximum value ŷT+k,imax and one minimum

value ŷT+k,imin within the time series, and by definition ŷT+k,imin ≤ ˆ̄yT+k ≤ ŷT+k,imax . By the

Intermediate Value Theorem (IVT) there exists at least one point i∗ between ŷT+k,1 and ŷT+k,n for

which ŷT+k,i∗ = ˆ̄yT+k. See IVT in appendix A1.1.

Consider some implications of Theorem 1. First, there always exists at least one point forecast

in T + k that is equal to the forecast of the average. Forecasting this point-in-time is equivalent

to forecasting the period average. Second, there may exist more than one point forecast within a

period that is equal to the period average forecast. Finally, even if the bottom-up forecasts consist

of point sampled daily data, the point i∗ does not need to be discrete for the equivalence to hold.

We refer to the use of a point forecasts within t which are constructed with data that is sampled

at the end of each period and equal to the forecast of the period average as Period-End-Point

Sampling (PEPS).

Definition 1. Definition of PEPS: Let ˆ̄yT+k, k = 1, 2, . . . ,K, be the forecast of ȳT+k. We construct

a point-in-time forecast for day i∗ in forecast period T + k where the point forecast is equal to the

period average forecast in T + k,

ˆ̄yT+k = ET,n [yT+k,i] , for i∗ of period T + k.

In practice, there are several possible ways to derive a point forecast that in expectation is equal

to the period average forecast. Herein, we explore a few approaches, but the discovery of additional

methods presents a promising avenue for further research.

The most obvious method is to utilize the known mappings between the sampled data and

the underlying higher-frequency process. Existing works have provided the mapping between the

point sampled end-of-period data and the underlying higher-frequency process. For example, Wei

(1981) and Weiss (1984) provide the mapping between for AutoRegressive Integrated Moving-

Average (ARIMA) processes and Marcellino (1999) does so for Vector AutoRegressive Integrated

Moving-Average (VARIMA) processes. Tsai and Chan (2005) and Man and Tiao (2006) consider
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AutoRegressive Fractionally Integrated Moving-Average (ARFIMA) processes. The objective is to

recover the underlying process, and then use the mapping to construct a point forecast for i∗ in

T + k. For example, when the mapping is known, we can use observations y1,n, y2,n, . . . , yT,n to

estimate models using point sampled observations, which can then be used to construct ŷT+k,i∗ and

forecast ˆ̄yT+k. In this case, model-based forecasts are estimated with end-of-period observations to

be consistent with the forecaster using available information at the end of the period. An example

of this direct mapping approach as shown in the next sections.

For some processes, the end-of-period forecasts may naturally coincide with the period average

forecasts. For example, the period average real price of crude oil was found to naturally coincide

with the end-of-period forecast by Benmoussa et al. (2023). In addition, for stationary processes,

the end of period and underlying forecasts are equal to the period average forecasts as they converge

to the mean at longer forecast horizons (see for example, Telser, 1967; Brewer, 1973; Weiss, 1984;

Marcellino, 1999). Moreover, as n becomes large, ȳt becomes white noise, and the forecasts quickly

approach the mean (Tiao, 1972; Stram and Wei, 1986). Both the example in section 2.3.3 and the

simulations in section 3 quantify that this convergence can occur quickly. These are three cases

where end-of-period and period average forecasts already coincide without any alterations needed.

Note that in cases where the daily data is observed, we can numerically derive estimates of

i∗. This involves estimating the underlying process and calculating i∗ directly. For example, a

daily model can be estimated, used to construct forecasts ŷT+k,i, and yT+k,i∗ is then given where

the bottom-up forecast ȳT+k and the daily forecast ŷT+k,i intersect. Once i∗ is known, one could

employ forecasts of this point in time as the period average forecast. For example, one could use

market-based expectations of yT+k,i∗ , using financial derivatives such as futures contracts, to derive

a forecast of the period average expectations (see e.g Farag et al., 2024).

Finally, it is possible to estimate the period average forecast through combinations of end-of-

period forecasts. This can be analytically by again mapping between the end-of-period and period

average forecast. This can also be done numerically by relying on the daily data or estimating the

relation between end-of-period and period average data. For example, forecast weighting methods

can be used to construct the period average forecast using period-end point forecasts. Consider a

simple case of a continuous forecast within ŷT+k−1,n and ŷT+k,n for all i within T + k.

Claim 1. For n ≥ 2, if the period average lies within ŷT+k−1,n and ŷT+k,n, then there exists is at

least one weight, ω∗, such that a piecewise linear interpolation of adjacent end-of-period forecasts,

ŷT+k−1,n and ŷT+k,n, ẏT+k,i = (1 − ω)ŷT+k−1,n + ωŷT+k,n is equal to the bottom-up forecast ˆ̄yT+k
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at point i#.

This again follows from the IVT, see proof in appendix A1.2. This means that the period

average forecast can be derived as an interpolation, ẏT+k,i, of the adjacent end-of-period forecasts

ŷT+k,n. We refer to methods that interpolate end-of-period forecasts to forecast the average as

Period-End-Point Sampled Interpolation (PEPSI).

Definition 2. Definition of PEPSI: Let ˆ̄yT+k, k = 1, 2, . . . ,K, be for forecast of ȳT+k. Using

forecast averaging, we construct a point-in-time forecast for i# in forecast period T + k where the

point forecast of ẏT+k,i is equal to the period average forecast in T + k,

ˆ̄yT+k = ET,n [ẏT+k,i] , for i# of period T + k.

For a piecewise linear interpolation, the requirement that the period average lies within ŷT+k−1,n

and ŷT+k,n is not particular demanding, and, for example, applies to any forecast exhibiting mono-

tonicity. While the optimal weighting can be solved analytically for many stochastic processes, the

weights can be solved numerically by analyzing the bottom-up forecasts if the observations exist,

see section 2.3. Alternatively, the weight can be solved numerically by optimizing the weight using

out-of-sample forecasts. Such numerical optimization is common place, and is akin to solving for

parameter weights in forecast combination. In section 4 we illustrate how this can be implemented

in practice.

Both PEPS and PEPSI provide alternative techniques to the bottom-up approach to construct

period average forecasts. The PEPS approach can, and the PEPSI approach does, rely on the use of

end-of-period forecasts to forecast the period average. The construction of end-of-period forecasts

and the use of end-of-period data in estimation is straightforward and already common place in

practice. In many applications, this is simple to implement and merely requires replacing period

average with end of period data. This is particularly advantages in situations such as policy and

multivariate models where it is impractical to introduce estimations at the daily frequency.

The use of end-of-period data in estimation also has potential practical advantages. First,

while daily data has typically only been available since the 80’s, monthly data is typically available

over longer periods and can be used for backcasting. Second, because the values of autoregressive

coefficients approach zero as n increases, the smaller autoregressive coefficients could lessen the

downward bias in estimation when using end-of-period versus daily data (Tiao, 1972; Stram and

Wei, 1986). Such gains would have to be weighed against losses from the use of fewer observations
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but could make PEPS even more efficient than the bottom-up approach given a sufficient sample

size when the parameter values need to be estimated.

2.3 Intuition: The AR(1) Case

The easiest way to provide intuition for ability of point forecasts to be equal to period average point

forecasts is to consider the case when the daily series is generated by a stationary4 autoregressive

model of order one, AR(1),

yt,i = ρyt,i−1 + ϵt,i , for i = 1, 2, ..., n; t = 1, 2, ...T. (3)

Here, n is the number of daily observations within a period, |ρ| < 1, and ϵt,i ∼ iid(0, σϵ) denotes

the daily innovation.

The goal is to construct a forecast of a temporally aggregated series, ȳt, which is obtained by

averaging across n ≥ 2 non-overlapping observations. Forecasts are constructed using the entire

information set up to period T , including daily observations. We assume that ρ is known to abstract

from estimation uncertainty.

2.3.1 PEPS: AR(1) case

In this setting, the forecast for the observation on day i in period T + k is given by

ET,n [yT+k,i] = ρ(k−1)n+iyT,n . (4)

Under the BU approach, the period-average forecast is given by the simple average of the daily

forecasts. For example, for the one-month-ahead forecast (k = 1)

ET,n [ȳT+1] =
1

n

n∑
i=1

ρiyT,n. (5)

Figure 1 illustrates the equivalence of the point and period-average forecasts, for a monthly

average (n = 21) of daily forecasts for an AR(1) model with ρ = 0.95 and yT,n = 1. The monthly

average forecast is constructed using the BU approach, and thus is a simple average over the daily

forecasts.

4As is standard, we assume that stationarity can be achieved by differencing (Wei, 1978; Kohn, 1982; Lütkepohl,
1984, 1986, 2006).
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Figure 1. Intersection of Point and Average Forecast

Note: Monthly forecast and monthly average for an AR(1) model with ρ = 0.95. Assumes n = 21 days in a month.

Since the daily forecast is monotonically declining, it must be that the monthly average forecast

intercepts the daily forecast at some point-in-time i∗, with 0 < i∗ < n. For stationary AR process,

arbitrary k, 0 < ρ < 1, i∗ can be found by solving

ρ(k−1)n+i∗yT,n =
1

n

n∑
i=1

ρ(k−1)n+iyT,n, (6)

which yields

i∗ =
ln

[
ρ(k−1)n+1(ρn−1)

n(ρ−1)

]
ln(ρ)

− (k − 1)n. (7)

This is the closed form solution to determine a point forecast i∗ within period t that is equal

to the period-average forecasts. Figure 2 graphs the values of i∗ for alternative values of ρ for

arbitrary n ≥ 2 for the one-period ahead forecast. It indicates that 1 < i∗ < (n − 1)/2. That is,

for low values of ρ, forecasts for a point within the beginning of the period will be closest to the

period average forecasts, while for values of ρ close to one, values closer to the middle of the month

coincide with period average forecasts.
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Figure 2. Day i∗ for which the Average and Point Forecasts Intercept

Note: Forecast of point i∗ for which the point forecast is equal to the period average forecast. Calculations for a
daily AR(1) process with 0 < ρ < 1.

2.3.2 PEPSI: AR(1) case

Alternatively, as illustrated in Figure 1 the period average forecast can be derived as a weighted

average of the adjacent end-of-period forecast. For arbitrary k this interpolation is given by:

ẏT+k,i = (1− ω)ŷT+k−1,n + ωŷT+k,n. (8)

In this case, the objective is to find ω∗ such that a weighted average of the adjacent end-of-

period forecasts, ẏT+k,i, is equal to the bottom-up forecast ˆ̄yT+k at some point i# within t. For

arbitrary k, ω∗ can be found by solving

(1− ω)ρ(k−1)nyT,n + ωρknyT,n =
1

n

n∑
i=1

ρ(k−1)n+iyT,n, (9)

which yields

ω∗ =
ρ(ρn − 1)− n(ρ− 1)

n(ρ− 1)(ρn − 1)
. (10)

Thus, it is possible to derive the exact weighting of end-of-period forecasts that will be equal to

the period average forecast. As illustrated in Figure 3 for most values of ρ the weight is primarily

given to the end-of-period forecast in period t. Only when the process is very persistent, do the

end-of-period forecasts approach an equal weighting (as ρ → 1, ω∗ → 0.5) .
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Figure 3. Weight ω∗ for which the Average and Point Forecasts Intercept

Note: Weight ω∗ for which the weighted end-of-period forecast is equal to the period average forecast. Calculations
for a daily AR(1) process with 0 ≤ ρ < 1.

2.3.3 End-of-Period Forecasts: AR(1) case

Suppose that instead of using the optimal point forecast or the optimal weighting of end-of-period

forecasts, a forecaster uses only the end-of-period forecast as a forecast of the period average. For

an AR(1), as shown in the last section, this point forecast should result in the largest forecast

error from the true period average for any point forecast within t, for arbitrary k, n. However,

the potential use of end-of-period forecast has important practical applications. For example, it

informs when forecasts conclusions derived for end-of-period forecasts are also likely to hold for

forecasts of period averages. So, when is an end-of-period forecast a good forecast of the period

average?

Proposition 1. Under the BU approach, the forecast error for the temporally aggregated AR(1)

data with n ≥ 2 and forecast horizon k is given by

n∑
i=1

[yT+k,i −ET,n (yT+k,i)] =

n∑
i=1

i∑
j=1

k∑
l=1

ρ(k−l)n−j+iεT+l,j .

Proof. See appendix A1.3

Proposition 2. Using the end-of-period forecast as the forecast of temporally aggregated AR(1)

data, for n ≥ 2 and forecast horizon k, the forecast error is given by

n∑
i=1

[yT+k,i −ET,n (yT+k,n)] =

n∑
i=1

yT,n

(
ρ(k−1)n+i − ρkn

)
+

n∑
i=1

i∑
j=1

k∑
l=1

ρ(k−l)n−j+iεT+l,j .
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Proof. See appendix A1.4

Claim 2. For n ≥ 2, the end-of-period forecast converges to the bottom-up forecast of temporally

aggregated AR(1) data as

(a) k becomes large and as

(b) ρ → 1.

Proof. The result is immediate from Proposition 1 and Proposition 2 as the difference in the two

forecasts is given by the first term on the right-hand side of Proposition 2.

Claim 2(a) indicates that the difference between point and average forecasts is primarily an

issue for short-horizon forecasts, as the forecasts converge at longer horizons. Moreover, claim 2(b)

indicates that independent of the forecast horizon, end-of-period point forecasts converge to BU

forecasts as the persistence of the data increases. This is noteworthy because this is precisely the

situation in which aggregation matters most, in the sense that forecasts constructed from models

estimated with average data perform poorly relative to the BU approach (Amemiya and Wu, 1972;

Tiao, 1972). As such, end of period forecasts are expected to be useful precisely when recursive

forecasts constructed with aggregate data are performing the worst. Due to the high persistence

often found in economic series, this case is also particularly relevant in practice.

3 Simulated Forecast Performance

We now use simulation analysis to quantify the forecast efficiency of alternative methods to forecast

period averages. For this purpose, we assume that the underlying data, yt,i, is observed for each

day i in period t. Consistent with the existing simulation analysis examining forecast losses from

aggregation (Amemiya and Wu, 1972; Tiao, 1972), we consider an autoregressive process of order

one:

yt,i = ρyt,i−1 + ϵt,i, for i = 0, 1, 2, ..., n; t = 1, 2, ...T. (11)

where ϵt,i ∼ N(0, 1), and n is the number of daily observations in t, which we allow to be months,

or quarters with n = 21, and 63, respectively. These assumptions extend the existing simulation

analysis of Amemiya and Wu (1972) and Tiao (1972) who only examine up to n = 4. In addition,

we extend existing analysis by quantifying values of ρ between 0.9 and 1 which is the operational

range for most economic daily data.
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The objective is to forecast the k-period-ahead average series, ˆ̄yT+k, where ȳt = n−1
∑n

i=1 yt,i.

As a baseline, we simulate 40 years worth of data in addition to burning the first 500 daily observa-

tions. We use the first 75 percent of the sample for estimation and the remaining 25 percent as the

forecast evaluation sample. This setup reflects common applications for daily financial data, which

are typically available since the early 1980s. The setup is also consistent with the applications to

macroeconomic variables in section 4.

We assume that the model structure is known but allow for parameter uncertainty. The au-

toregressive parameter is reestimated at every period with an expanding window, and forecasts are

computed out-of-sample. Under point sampling of end-of-period data, the sampled data remains an

AR(1) process, whereas the monthly average data is best approximated by an ARMA(1,1) (Weiss,

1984). Consequently, forecasts estimated with period average observations rely on an ARMA(1,1).

We report two common forecast criteria, the MSFE ratio and the success ratio for directional

accuracy. Both criteria are expressed relative to the period-average no-change forecast. This no-

change benchmark is commonly used in forecasting applications for aggregated data and is most

suitable to highlight the gains from using disaggregated forecast approaches.

The MSFE ratio for the k-steps-ahead forecast, MSFEratio
k , is calculated as the ratio of the

MSFE of the model-based forecast to the MSFE of the period-average no-change forecast:

MSFEratio
k =

∑Q
q=1(ȳq+k − ˆ̄yq+k|q)

2∑Q
q=1(ȳq+k − ȳq)2

, (12)

where q = 1, 2, 3, . . . , Q denotes all periods of the forecast evaluation sample, and ˆ̄yq+k|q is the

conditional forecast for the k-step-ahead aggregated observation, ȳq+k.

The directional accuracy is assessed using the mean directional accuracy, referred to as the

success ratio. It describes the fraction of times the forecasting model can correctly predict the

change in the direction of the series of interest:

SRk =
1

Q

Q∑
q=1

1[sgn(ȳq+k − ȳq) = sgn(ˆ̄yq+k|q − ȳq)], (13)

where 1[·] is an indicator function with 1 if true and 0 otherwise, and sgn(·) is a sign function with

sgn(x) =


1 x > 0

−1 x ≤ 0

. (14)
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Under this definition, the success ratio equals one half (SRk = 0.5) when there is no directional

accuracy, while success ratios greater than one half (SRk > 0.5) indicate directional predictability.

3.1 Forecast Models

To quantify the accuracy of alternative forecasting techniques, we compare the accuracy of five

alternative forecasts.

The first approach that we consider is the BU approach. In the current setting, it involves first

estimating the AR(1) model at the daily frequency and then ex post averaging the forecasts to the

period average. Specifically, the estimated model using the daily data, yt,i, is:

yt,i = ρ̂yt,i−1 + ϵ̂t,i, ∀ t ≤ T . (15)

The parameter ρ̂ is used to construct recursive model-based forecasts of the daily data, ŷT,n+h|T ,

where h ≥ 1 is the forecast horizons in days. Then, the daily forecasts, ŷT+k,i|T , k ≥ 1, are averaged

to the period average:

ˆ̄yT+k|T =
1

n

n∑
i=1

ŷT+k,i|T , ∀ k ≥ 1. (16)

The second approach is the aggregated approach. In the current setting, it involves estimating

an ARMA(1,1) model with period-average data to construct forecasts of ȳT+k. Specifically, the

estimate using the monthly average data, ȳt, is:

ȳt = ρ̃ȳt−1 + ϵ̃t + α̃ϵ̃t−1, ∀ t ≤ T . (17)

The parameters ρ̃ and α̃ are used to construct recursive model-based forecasts of the monthly

average, ˜̄yT+k|T .

We next examine an application of period-end-point sampling (PEPS). The model is estimated

with end-of-period data, and then point forecasts are constructed and used as the forecasts of the

period average. Specifically, the estimated AR(1) model at the period-t frequency using a time

series of end-of-period values is:

yt,n = ρ̌yt−1,n + ϵ̌t, ∀ t ≤ T . (18)

The end-of-period point forecasts are used to construct the point forecast for i∗ derived in
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section 2, denoted y̌T+k,i∗|T , which is equivalent to the period average forecast. For an AR(1),

point sampling implies that ρ̌ = ρn (Zellner and Montmarquette, 1971). Thus, the point forecast is

equal to the BU forecast using the estimated parameter y̌T+k,i∗|T = ρ̌(k−1)+i∗/nŷT,n. Then, following

PEPS, the i∗ point forecasts are used as the forecasts of the period averages ˆ̄yT+k = y̌T+k,i∗|T .

PEPSI forecasts are obtained using a linear interpolation of the end-of-month forecasts of two

adjacent months:

ẏT+k,i#|T = ωy̌T+k,n|T + (1− ω)y̌T+k−1,n|T , ∀ k ≥ 1 , (19)

where ω is the forecast averaging weight, which use the estimates of ρ̌ in equation 10. Then, the

i# point forecasts are used as the forecasts of the period averages ˆ̄yT+k = ẏT+k,i#|T .

In addition, we also quantify the use of the end-of-period (EoP) forecast as the forecast of the

period average. In this case, the model-based forecasts of the end-of-period y̌T+k,n|T . are used as

the forecasts of the period average ˇ̄yT+k = y̌T+k,n|T . The purpose of including this forecast is to

examine the trade-off between the forecast gains from using point-sampled data with the forecast

losses from not using the optimal point forecast.

Finally, we also consider the no-change (NC) forecast of the daily data ˆ̄yT+k = yT,n which is

given by the end-of-period no-change. This no-change forecast is used to test against the random

walk hypothesis, and when, ρ = 1, the end-of-month no-change forecast outperforms the period-

average no-change forecast for all n, h (Ellwanger and Snudden, 2023a).

3.2 Simulated Performance

The comparison of the alternative forecasts of monthly average observations for alternative values

of ρ is provided in Table 1. Values of the MSFE ratio less than one indicate mean-squared forecast

improvements relative to the monthly average no-change forecast. Values of the success ratio above

0.5 indicate improvements in directional accuracy above random chance.

The last column of Table 1 shows the relative performance of the no-change forecast constructed

with end-of-month values. When ρ > 0.9, the end-of-month no-change forecast is a more accurate

forecast of the monthly average than the monthly average no-change forecast, consistent with Tiao

(1972). For large values of ρ, the forecast gains from the end-of-month no-change forecast relative

to the monthly average no-change forecast can be substantial, with MSFE reductions approaching

46 percent. In terms of directional accuracy, the end-of-month no-change forecast outperforms the
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Table 1. One-Month-Ahead Forecast Performance of Alternative Forecast Approaches

Method Aggregate Bottom-Up PEPS PEPSI EoP No-Change
Data Average Daily EoM EoM EoM Daily
ρ

1.00 0.94 0.54 0.54 0.54 0.55 0.54
(0.044) (0.065) (0.065) (0.065) (0.066) (0.064)

0.995 0.89 0.54 0.54 0.54 0.56 0.56
(0.043) (0.064) (0.064) (0.064) (0.070) (0.068)

0.99 0.90 0.54 0.54 0.54 0.57 0.58
(0.044) (0.064) (0.064) (0.064) (0.072) (0.073)

0.98 0.85 0.54 0.54 0.54 0.60 0.63
(0.043) (0.063) (0.063) (0.063) (0.076) (0.081)

0.95 0.75 0.53 0.54 0.53 0.63 0.77
(0.041) (0.060) (0.060) (0.061) (0.077) (0.111)

0.90 0.65 0.53 0.53 0.53 0.63 1.04
(0.044) (0.056) (0.061) (0.056) (0.072) (0.166)

ρ
1.00 0.58 0.74 0.74 0.74 0.74 0.74

(0.045) (0.039) (0.039) (0.039) (0.039) (0.039)
0.995 0.61 0.74 0.74 0.74 0.73 0.73

(0.041) (0.039) (0.039) (0.039) (0.040) (0.039)
0.99 0.61 0.74 0.74 0.74 0.73 0.73

(0.041) (0.039) (0.039) (0.039) (0.039) (0.040)
0.98 0.63 0.74 0.74 0.74 0.72 0.72

(0.038) (0.039) (0.039) (0.039) (0.039) (0.040)
0.95 0.67 0.74 0.74 0.74 0.72 0.69

(0.037) (0.039) (0.039) (0.039) (0.038) (0.042)
0.90 0.70 0.74 0.74 0.74 0.72 0.65

(0.036) (0.038) (0.044) (0.038) (0.038) (0.044)

MSFE Ratio

 Success Ratio

Note: Comparison of monthly forecasts for 10000 simulations of an AR(1) model at the daily frequency when
estimated with alternative methods (standard deviation of the ratios in brackets). All MSFE and success ratios
are expressed relative to the monthly average no-change forecast. Values of the MSFE ratio less than one indicate
improvements over the monthly average no-change forecast. Values of the success ratio greater than 0.5 indicate
improvements over random chance. End-of-period (EoP) uses end-of-period forecasts as the forecast of the average.
The last column presents the forecasts from the no-change forecast based on the end-of-month (EoM) observation.

monthly average no-change forecast even for ρ = 0.9, demonstrating that temporal disaggregation

gains arise for directional accuracy over a wider parameter space than for MSFE precision.

The forecasts constructed with aggregated data are shown in the first column of Table 1. These

forecasts outperform the period-average no-change forecast for all values of ρ ≤ 1. However, for

ρ > 0.95, the forecasts constructed with aggregated data perform worse than the end-of-month

no-change forecast. This example shows that comparisons with the period-average no-change fore-

cast can lead to spurious predictability, and illustrates the importance of comparing forecasts of
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aggregated data to the random forecast of the daily data to evaluate the usefulness of the forecasts.

In contrast, the relative performance of the BU forecasts (column three of Table 1) does not

depend as much on the autocorrelation of the underlying data. For all ρ < 1, the bottom-up

approach outperforms the end-of-month no-change forecast. The gains in forecast accuracy from

PEPS and PEPSI, shown in column four and five of Table 1, are very similar to that of the BU

forecasts, consistent section 2. The magnitude of the forecast gains from the PEPS and BU forecasts

demonstrates the substantial advantages from temporal disaggregation of daily data in forecasts.

Finally, for MSFE precision, the end-of-month forecasts outperform the end-of-month no-change

forecast outperforms for all ρ < 0.99. These results are fascinating as they suggest that the forecast

gains from using point-sampled data far exceed the forecast losses from not using the optimal

point forecast within t. In fact, the end-of-month forecasts substantially outperform period average

no-change forecasts and model-based forecasts constructed using period averages in all cases.

The exercises demonstrate that substantial gains in forecast accuracy can be obtained by using

information from the underlying daily data for forecasts of the monthly average data. These results

also suggest that PEPS point forecasts rival the efficiency of the bottom up approach, and provide

effective forecasts of monthly average data.

3.3 Longer Horizons

The loss in relative forecast accuracy for forecasts computed with temporally aggregated data

is generally largest at the one-step-ahead prediction, and decreases for longer forecast horizons

(Amemiya and Wu, 1972; Tiao, 1972). The intuition for this result is that the aggregation bias

is constant across horizons, whereas the forecast error resulting from unpredictable innovations

increases with the forecast horizon. For the same reason, the relative performances of the BU

forecasts, PEPS and PEPSI forecasts, and end-of-period forecasts, and forecasts computed with

aggregated data converge at longer horizons.

This pattern is confirmed in Table 2, which shows the performance of the five forecasts (equa-

tions 15–18) at the 1-, 3-, 6-, and 12-month horizon. For the 3-month horizon and beyond, the

performance of all model-based forecasts is similar for the case of ρ = 0.95. The performance of

PEPS is very close to the BU forecast beyond the one-month-ahead horizon. In contrast, the use of

aggregated data results in the largest forecast errors at medium-run horizons when the daily data

is persistent (ρ = 0.995). These results indicate that the relative performance of the BU and PEPS

approaches quickly convergence at longer horizons, reinforcing the idea that the loss in forecast
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Table 2. Performance of Forecasts at Alternative Horizons

Model
Method Aggregate BU PEPS PEPSI EoP NC Aggregate BU PEPS PEPSI EoP NC
Data Average Daily EoM EoM EoM Daily Average Daily EoM EoM EoM Daily
Horizon

1 0.92 0.54 0.54 0.54 0.56 0.56 0.75 0.53 0.54 0.53 0.63 0.77
(0.043) (0.064) (0.064) (0.064) (0.070) (0.068) (0.041) (0.060) (0.060) (0.061) (0.077) (0.111)

3 0.88 0.81 0.81 0.81 0.81 0.92 0.54 0.54 0.54 0.54 0.54 1.18
(0.062) (0.063) (0.076) (0.076) (0.076) (0.052) (0.060) (0.059) (0.062) (0.062) (0.062) (0.103)

6 0.79 0.77 0.77 0.77 0.77 0.98 0.51 0.51 0.51 0.51 0.51 1.20
(0.105) (0.100) (0.111) (0.111) (0.111) (0.041) (0.062) (0.062) (0.062) (0.062) (0.062) (0.099)

12 0.67 0.66 0.66 0.66 0.66 1.01 0.51 0.51 0.51 0.51 0.51 1.20
(0.154) (0.152) (0.157) (0.157) (0.157) (0.034) (0.065) (0.065) (0.065) (0.065) (0.065) (0.103)

1 0.60 0.74 0.74 0.74 0.73 0.73 0.67 0.74 0.74 0.74 0.72 0.69
(0.042) (0.039) (0.039) (0.039) (0.040) (0.039) (0.037) (0.039) (0.039) (0.039) (0.038) (0.042)

3 0.62 0.65 0.65 0.65 0.65 0.60 0.74 0.74 0.74 0.74 0.74 0.55
(0.048) (0.043) (0.044) (0.044) (0.044) (0.040) (0.038) (0.038) (0.038) (0.038) (0.038) (0.042)

6 0.66 0.67 0.67 0.67 0.67 0.56 0.75 0.75 0.75 0.75 0.75 0.54
(0.059) (0.054) (0.055) (0.055) (0.055) (0.040) (0.038) (0.038) (0.038) (0.038) (0.038) (0.042)

12 0.70 0.70 0.70 0.70 0.70 0.53 0.75 0.75 0.75 0.75 0.75 0.54
(0.070) (0.068) (0.068) (0.068) (0.068) (0.041) (0.040) (0.040) (0.040) (0.040) (0.040) (0.043)

MSFE Ratio

 Success Ratio

ρ=0.95ρ=0.995

Note: Comparison of monthly forecasts at alternative forecast horizons for 10,000 simulations of an AR(1) model
at the daily frequency when estimated with alternative methods (standard deviation of the ratios in brackets). All
MSFE and success ratios are expressed relative to the monthly average no-change forecast. Values of the MSFE ratio
less than one indicate improvements over the monthly average no-change forecast. Values of the success ratio greater
than 0.5 indicate improvements over random chance. End-of-period (EoP) uses end-of-period forecasts as the forecast
of the average. The last column presents the forecasts from the no-change forecast based on the end-of-month (EoM)
observation.

accuracy from using aggregated data is the largest at the one-step-ahead forecast.

3.4 Quarterly Data

Table 3 reports the one-period ahead relative forecast gains for quarterly aggregation frequencies

and values of ρ. The gains from disaggregated methods are even greater at the quarterly frequency.

This indicates that PEPS is useful for aggregation frequencies commonly encountered in practice.
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Table 3. Performance of Forecasts at Quarterly Sampling Frequency

Aggregation
Method Aggregate BU PEPS PEPSI EoP NC
Data Average Daily EoM EoM EoM Daily
ρ

1.00 0.96 0.53 0.53 0.53 0.55 0.53
(0.085) (0.116) (0.116) (0.116) (0.123) (0.114)

0.995 0.88 0.53 0.53 0.53 0.58 0.59
(0.082) (0.114) (0.115) (0.115) (0.138) (0.138)

0.99 0.83 0.53 0.53 0.53 0.61 0.66
(0.080) (0.112) (0.113) (0.113) (0.142) (0.163)

0.98 0.74 0.52 0.53 0.53 0.64 0.80
(0.080) (0.108) (0.109) (0.111) (0.142) (0.218)

0.95 0.62 0.52 0.53 0.54 0.62 1.30
(0.084) (0.100) (0.101) (0.171) (0.132) (0.409)

0.90 0.57 0.52 0.53 0.60 0.58 2.21
(0.084) (0.092) (0.097) (0.231) (0.120) (0.741)

ρ
1.00 0.58 0.75 0.75 0.75 0.74 0.75

(0.078) (0.067) (0.067) (0.067) (0.068) (0.067)
0.995 0.62 0.75 0.74 0.73 0.73 0.73

(0.068) (0.068) (0.068) (0.068) (0.068) (0.070)
0.99 0.64 0.75 0.75 0.72 0.72 0.71

(0.065) (0.067) (0.067) (0.068) (0.068) (0.070)
0.98 0.67 0.75 0.75 0.72 0.72 0.69

(0.063) (0.067) (0.067) (0.065) (0.065) (0.073)
0.95 0.72 0.75 0.75 0.72 0.72 0.65

(0.062) (0.065) (0.065) (0.063) (0.063) (0.078)
0.90 0.73 0.75 0.75 0.73 0.73 0.61

(0.060) (0.063) (0.063) (0.062) (0.062) (0.080)

Quarterly

MSFE Ratio

Success Ratio

Note: Comparison of one-period ahead quarterly forecasts for 10,000 simulations of an AR(1) model at the daily
frequency when estimated with alternative methods (standard deviation of the ratios in brackets). All MSFE and
success ratios are expressed relative to the monthly average no-change forecast. Values of the MSFE ratio less than
one indicate improvements over the monthly average no-change forecast. Values of the success ratio greater than
0.5 indicate improvements over random chance. End-of-period (EoP) uses end-of-period forecasts as the forecast of
the average. The last column presents the forecasts from the no-change forecast based on the end-of-month (EoM)
observation.
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4 Application to Real-time Forecasts

4.1 Data

The empirical applications consider real-time monthly average forecasts of two macroeconomic

series: the nominal yield on 10-year U.S. government bonds and the real price of copper. Daily

closing spot prices of copper are obtained from the London Metal Exchange. Daily data for the

yield on the 10-year Treasury bonds is obtained from FRED. The price index used to deflate the

nominal price of copper is the seasonally adjusted U.S. consumer price index (CPI) from the real-

time database of the Philadelphia Federal Reserve. The CPI is published with a one-month delay

and is nowcasted using the average historical growth rate. A detailed description of the data sources

and CPI nowcasting is provided in appendix A2.

Table 4. Descriptive Statistics

Real Series Date Range PACF(1) N Mean Std. Dev. Data Construction

Copper 1986.04–2021.01 0.9908 418 2094.32 899.27 Monthly average
Backcasted Copper 1973.01–2021.01 0.9890 577 2153.15 929.22 Monthly average

10-year Treasury Yield 1973.01–2021.01 0.9956 577 6.19 3.21 Monthly average

Copper 1986.04–2021.01 0.9908 418 2103.78 908.33 Last trading day
Backcasted Copper 1973.01–2021.01 0.9890 577 2158.74 934.38 Last trading day

10-year Treasury Yield 1973.01–2021.01 0.9944 577 6.18 3.23 Last trading day

Copper 1986.04.01–2021.01.31 0.9991 8837 2106.94 905.61 Closing prices
10-year Treasury Yield 1973.01.02–2021.01.29 0.9998 12075 6.16 3.22 Closing prices

Consumer Price Inflation 1973.01–2021.01 0.9922 565 3.86 3.03 Monthly index
OECD CLI 1973.01–2021.01 0.9758 577 0.00 1.42 Monthly index

Monthly Average

End of Month 

Daily

Monthly Index

Note: Copper prices are reported in real terms, 10-year bond yields in nominal terms. Consumer price inflation is
reported in year-over-year growth rates in percent. The number of monthly or daily observations is denoted N . The
2021.04 vintage is reported for the consumer price index. PACF(1) denotes the partial autocorrelation coefficient of
the first lag.

The descriptive statistics for the end-of-month and monthly average series are reported in

Table 4. Monthly averages are the simple average of daily closing prices. End-of-month observations

are the closing price on the last trading day of each month. For all of our series, the standard

deviation of the end-of-period observations are very similar to that of the aggregated observations.

The partial autocorrelations coefficient of the monthly real data indicates that all the series are

highly persistent.
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One advantage of using monthly data is that the monthly average and end-of-month prices can

be backcasted using monthly average data. This is useful because the backcasting may provide a

better estimate of the long-run mean, which could improve the forecast accuracy at longer horizons.

The usefulness of backcasting is an empirical question and is quantified for the real price of copper.

End-of-month and monthly average copper prices are backcasted to 1973M1 using the World Bank

Monthly Average Commodities Price.

All high-frequency observations are available in real time and are not subject to historical

revisions. Models are estimated using the available data, which starts in 1973M1 for yields and

backcasted copper prices and in 1986M4 for copper prices. The real end-of-period observations,

Rt,n, are constructed by applying the CPI index to the last observation of the period using Rt,n|t =

pt,n/CPIt|t. This measure of end-of-month real prices is common for forecasts of end-of-month real

prices, such as bilateral exchange rates (Meese and Rogoff, 1983) and primary commodities (West

and Wong, 2014).

4.2 Forecasts

All forecasts are computed out-of-sample using real-time methods. Specifically, we use historical

vintages of (nowcasted) data available in the month of the forecast, and the models are re-estimated

at every monthly step with an expanding window. The forecast evaluation period is 2000M1-

2021M1.

Augmented Dickey-Fuller tests are used to test for unit roots and determine the appropriateness

of estimating the models in levels or differences. The results suggest that the backcasted monthly

real prices of copper are weakly stationary in log real levels, but the nominal daily data and the

non-backcasted monthly data are only weakly stationary in differences. Moreover, both the daily

and monthly yields are stationary in differences. Accordingly, the models for nominal interest rate

are estimated in differences, and the models for the real backcasted copper are estimated in log

levels, and real and non-backcasted copper are estimated in growth rates.

For models estimated in monthly averages in real log levels, r̄t = ln(R̄t), the ARMA(p, q) with

p autoregressive and q moving-average parameters, and estimated innovations ϵ̃t is given by:

ã(L)r̄t = c̃+ b̃(L)ϵ̃t , ∀ t ≤ T , (20)

where c̃ is the estimated constant and L is the lag operator such that Lyt = yt−1, b̃(L) = (1 +
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α̃1L + · · · + α̃qL
q), and ã(L) = (1− ρ̃1L− · · · − ρ̃pL

p). These estimated parameters are used to

construct recursive model-based forecasts, ˜̄rT+k|T , which are converted back into real prices in

levels, ˜̄RT+k|T = exp
(
˜̄rT+k|T

)
.

Forecasts of the monthly average nominal yields, S̄t, are estimated in differences d̄t = S̄t− S̄t−1.

Then, the level forecasts are constructed using the model-implied difference, such that

˜̄ST+k|T = ˜̄dT+k|T + ˜̄ST+k−1|T , ∀ k ≥ 1 .

Similarly, forecasts constructed using monthly average real growth rates, ḡt = R̄t/R̄t−1 − 1, are

converted back into real-level forecasts using the model-implied net growth rate

˜̄RT+k|T = (1 + ˜̄gT+k|T ) · ˜̄RT+k−1|T ∀ k ≥ 1 .

Since all nominal daily prices are difference stationary, we estimate the model using the growth

rate of nominal daily prices, gt,i = St,i/St,i−1. The estimated ARMA(p, q) model is given by

â(L)gt,i = ĉ+ b̂(L)ϵ̂t,i, ∀ i, t ≤ T. (21)

Consistent with Rossana and Seater (1995), we employ information criteria for model selection to

select autoregressive terms.5 The estimated parameters are used to construct recursive model-based

forecasts of the growth rate of daily nominal prices, ĝT,n+h|T , where h ≥ 1 is the forecast horizons

in days. The forecasts for the level of the nominal price on day i of month T + k, given month T

information, are based on the model-implied net growth rate:

ŜT,n+h|T = (1 + ĝT,n+h|T ) · ŜT,n+h−1|T , ∀ h ≥ 1. (22)

For the BU forecasts of monthly average real data, one issue to overcome is that the CPI is only

available at the monthly frequency, which may help explain why this approach has been overlooked

in applications to real macroeconomic variables that are aggregated from a daily frequency (see

for example, Box et al., 2015). However, we can simply average the nominal daily forecasts to the

5Our results are quantitatively robust to the ARMA(1,1) benchmark, as shown in section 4.5.
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monthly frequency and deflate into real prices using the expected CPI deflator:

ˆ̄RT+k|T =
n−1

∑n
i=1 ŜT+k,i|T

ET,n[CPIT+k|T ]
, ∀ k ≥ 1. (23)

The expected CPI, ET,n[CPIT+k|T ], is constructed using the standard practice of expanding the

(nowcasted) current CPI observations with the average historical rate of inflation.

Yield forecasts are constructed similarly, except that the nominal daily data is transformed into

differences, dt,i = St,i − St,i−1, instead of growth rates. In this case, the forecasts of the series in

levels are constructed by summing over the forecasted differences:

ŜT,n+h|T = d̂T,n+h|T + ŜT,n+h−1|T , ∀ h ≥ 1. (24)

The daily forecasts of the nominal series in levels are then averaged to the monthly frequency:

ˆ̄ST+k|T =
1

n

n∑
i=1

ŜT+k,i|T , ∀ k ≥ 1. (25)

Implementing the end-of-month forecasts straightforward, as it merely requires replacing the

time series of monthly average prices with the time series of real end-of-period observations, Rt,n,

during the model estimation. Specifically, the ARMA(p, q) model is estimated at the monthly

frequency with time series of end-of-month prices in log-real levels and expressed as:

ǎ(L)rt,n = č+ b̌(L)ϵ̌t, ∀ t ≤ T. (26)

As before we, report the recursive model-based forecasts of the end-of-month values řT+k,n|T , which

are converted back into real prices in levels, ŘT+k,n|T = exp
(
řT+k,n|T

)
. The end-of-month forecasts

are used as forecasts of the corresponding monthly average value, ˇ̄RT+k|T = ŘT+k,n|T . End-of-

month forecasts estimated in nominal differences are converted into nominal levels following the

approach outlined above.

We explore two disaggregated PEPSI approaches, which are obtained using a linear interpolation

of the end-of-month forecasts of two adjacent months using equation 19.

The first PEPSI application uses a fixed ω numerically selected using the daily data from the

pre-forecast evaluation sample. Figure 4 reports the in-sample Pearson autocorrelations for both

the daily real price of copper and the nominal 10-year treasury bonds. For both copper and
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Figure 4. Intersection of Point and Average Forecast

(a) Real Price of Copper (b) Nominal 10-Year Treasury Bonds

Note: In sampled estimates with ŷT+1,i calculated using daily Pearson autocorrelations. ẏT+1,i is the linearly
interpolated end-of-period values, and ȳT+1 is the bottom-up forecast calculated as the simple average of the daily
forecasts.

yields, points forecasts near the middle-of-month are found to be equal to the period average, and

the optimal weight, ω, for PEPSI is given by 0.524 and 0.5095, respectively.6 The period average

PEPSI forecasts are constructed using these weights in equation 19 for the entire forecast evaluation

sample.

The second PEPSI application estimates ω using forecast averaging. The parameter is estimated

with constrained linear regressions (Davidson, 1993) with an expanding window in real-time. To

provide an estimation sample, we utilize forecast outcomes beginning in 1992.01.7

Finally, to demonstrate the usefulness of PEPSI in a multivariate setting, we examine forecasts

in a two-variable VAR estimated at the monthly frequency that includes the real price of copper

and the Organisation for Economic Co-operation and Development’s Composite Leading Indicator

(CLI) for the G20 countries. The VAR(p) model with p autoregressive parameters can be expressed

as:

(1− ǎ(L))gt = ět, ∀ t < T , (27)

where gt, is a 2x1 vector of growth rates, ǎ(L) is the autoregressive parameter matrix of order p,

and ět is a 2x1 vector of innovations. The estimated parameters are used to construct recursive

6Interestingly, a grid search of alternative values of ω to two decimal places confirm that these parameter values
minimizes forecast error over the forecast evaluation sample.

7These forecasts are only used to estimate the weights. We continue to report forecast evaluation criteria for
2000M1–2021M1.
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model-based forecasts of the growth rates, ˇ̄gT+k|T which are converted back into real prices in levels

in the same way as described above for the ARIMA forecasts.

It is not possible to apply the BU approach to this VAR as the CLI is only observed at the

monthly frequency. However, applying PEPSI to a VAR model only involves replacing the monthly

average growth rates, ḡt, in the vector gt, with the end-of-month growth rates gt,n. Again, the

estimated parameters are used to construct recursive forecasts of the end-of-period growth rates,

which are converted back into levels following the approaches described for the ARIMA model.

4.3 Forecast Criteria

For forecast evaluation, we report the MSFE ratio and the success ratio expressed relative to the

end-of-month no-change forecast to test the null hypothesis that the future period averages are

conditionally unpredictable (Ellwanger and Snudden, 2023a).

The MSFE ratio for the k-steps-ahead forecast, MSFEratio
k , is calculated as the ratio of the

MSFE of the model-based forecast to the MSFE of the end-of-month no-change forecast:

MSFEratio
k =

∑Q
q=1(R̄q+k − ˆ̄Rq+k|q)

2∑Q
q=1(R̄q+k −Rq,n|q)2

, (28)

where q = 1, 2, . . . , Q denotes all periods of the evaluation sample, ˆ̄Rq+k|q is the conditional, model-

implied real-time forecast for the k-month-ahead observation, R̄q+k, and Rq,n is the time q end-of-

period observation.

The null hypothesis of an equal MSFE for the model-based forecast relative to the no-change

forecasts is tested following Diebold and Mariano (1995) and compared against standard normal

critical values. P-values for tests relative to the monthly average are reported in parentheses.8

Directional accuracy is assessed via the success ratio, SRk, indicating the fraction of times the

forecasting model correctly predicts the change in direction of the series of interest:

SRk =
1

Q

Q∑
q=1

1[sgn(R̄q+k −Rq,n) = sgn( ˆ̄Rq+k|q −Rq,n|q)], (29)

The null hypothesis that the success ratio is 0.5 (corresponding to the case that the directional

prediction is completely random) is tested following Pesaran and Timmermann (2009), with the

8Under nested models, real-time data that is subject to revisions, and estimation uncertainty, the assumptions
underlying Diebold and Mariano (1995) are not met (Diebold, 2015). As is standard, the tests are still reported with
this caveat in mind.
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corresponding p-values reported in parentheses.

4.4 Results

4.4.1 Nominal Yields on 10-year Treasury Bonds

Table 5 presents the performance of forecasts of the monthly average nominal yields on 10-year U.S.

government bonds. It also shows a loss in forecast accuracy at short horizons from using aggregated

data, with an MSFE precision that is 81 percent worse than the end-of-month no-change forecast

at the one-month-ahead horizon. However, at longer horizons, the forecasts based on aggregated

data outperform the end-of-month no-change forecast. These improvements are significant at the 5

percent level for the MSFE at the two-year horizon, and for directional accuracy at the six-month

horizon.

Table 5. Real-Time Model-Based Forecasts of the Nominal 10-Year Treasury Bonds

Method Aggregate Bottom-up PEPSI PEPSI(est) EoP 
Data Average Daily EoM EoM EoM 

Horizon
1 1.81 (1.000) 1.02 (0.926) 1.02 (0.784) 0.99 (0.160) 1.11 (0.996)
3 1.06 (0.927) 1.02 (0.926) 1.00 (0.427) 1.01 (0.670) 1.01 (0.579)
6 1.03 (0.743) 1.01 (0.666) 0.98 (0.269) 0.99 (0.355) 0.99 (0.433)

12 0.98 (0.337) 0.97 (0.231) 0.92 (0.097) 1.12 (0.991) 0.92 (0.090)
24 0.84 (0.006) 0.96 (0.198) 0.82 (0.004) 1.11 (0.998) 0.81 (0.004)

1 0.50 (0.460) 0.46 (0.767) 0.49 (0.444) 0.54 (0.064) 0.49 (0.444)
3 0.49 (0.524) 0.47 (0.848) 0.56 (0.031) 0.46 (0.943) 0.57 (0.025)
6 0.57 (0.027) 0.51 (0.880) 0.56 (0.121) 0.49 (0.780) 0.58 (0.048)

12 0.54 (0.431) 0.62 (0.932) 0.56 (0.398) 0.47 (0.742) 0.59 (0.221)
24 0.58 (0.161) 0.57 (1.000) 0.59 (0.209) 0.45 (0.844) 0.59 (0.214)

MSFE Ratio

Success Ratio

Note: Real-time, out-of-sample forecasts of the nominal monthly average 10-year Treasury bonds in levels, 2000M1–
2021M1. End-of-period (EoP) uses end-of-period forecasts as the forecast of the average. AR(12) selected using AIC.
Forecast criteria expressed relative to the end-of-month no-change forecast, with p-values reported in parentheses.
Bold values indicate forecast gains relative to the no-change forecast for the MSFE ratio and gain in directional
accuracy for the success ratio.

Relative to the forecasts computed with aggregated data, the BU approach improves the MSFE

accuracy but fares worse in terms of directional accuracy at short horizons. This arises because

directional criteria are impervious to the magnitude of the forecast error. Moreover, the BU ap-

proach does not show significant gains in terms of MSFE or directional accuracy beyond the 6-month

horizon, highlighting the disadvantages of the BU approach at longer forecast horizons.

At the one-month-ahead horizon, the PEPSI forecasts perform similarly to the BU forecasts in
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terms of the MSFE. The PEPSI with the estimated weights ”PEPSI(est)” exhibits the best one step

ahead forecast performance, and the gains for directional accuracy are significant at the 10 percent

level. The PEPSI approach with the constant weight performs similar well at longer horizons,

which further corroborates the usefulness of the disaggregated approaches utilizing end-of-period

data at both short- and long-horizon forecasts.

4.4.2 Real Price of Copper

The forecasts of the monthly average real price of copper are reported in Table A3. In terms of

MSFE, the forecasts constructed with monthly average data perform very poorly at short horizons.

The use of backcasted monthly average copper prices results in small gains at short horizons. With

backcasted data, the long-horizon forecasts outperform the end-of-month no-change forecast in

terms of directional accuracy at the two-year horizon. These results illustrate that the longer sample

periods are a comparative advantage of using lower-frequency data for longer horizon forecasts.

Table 6. Real-Time Model-Based Forecasts of the Real Price of Copper

Method Aggregate Bottom-up PEPSI PEPSI(est) EoP 
Data Average Daily EoM EoM EoM 

Horizon
1 1.70 (0.999) 0.99 (0.299) 0.93 (0.089) 0.96 (0.297) 0.97 (0.376)
3 1.11 (0.809) 1.03 (0.872) 0.96 (0.326) 1.01 (0.560) 1.00 (0.495)
6 1.09 (0.708) 1.06 (0.906) 1.01 (0.527) 1.03 (0.626) 1.05 (0.619)

12 1.07 (0.662) 1.14 (0.958) 1.04 (0.590) 1.04 (0.683) 1.06 (0.647)
24 1.09 (0.743) 1.29 (0.998) 1.05 (0.661) 0.96 (0.339) 1.07 (0.708)

1 0.55 (0.057) 0.54 (0.081) 0.52 (0.309) 0.52 (0.309) 0.52 (0.309)
3 0.52 (0.175) 0.50 (0.726) 0.56 (0.053) 0.51 (0.343) 0.54 (0.092)
6 0.54 (0.121) 0.50 (0.720) 0.52 (0.210) 0.50 (0.442) 0.52 (0.237)

12 0.58 (0.111) 0.42 (0.977) 0.58 (0.101) 0.56 (0.167) 0.58 (0.101)
24 0.62 (0.040) 0.38 (1.000) 0.61 (0.047) 0.62 (0.030) 0.61 (0.047)

MSFE Ratio

Success Ratio

Note: Real-time, out-of-sample forecasts of the monthly average real price of copper in levels, 2000M1–2021M1.
End-of-period (EoP) uses end-of-period forecasts as the forecast of the average. AR(12) selected using AIC. Monthly
value begin in 1973 and are backcast. Forecast criteria expressed relative to the end-of-month no-change forecast,
with p-values reported in parentheses. Bold values indicate forecast gains relative to the no-change forecast for the
MSFE ratio and gain in directional accuracy for the success ratio. “Backcast” data refers to backcasting monthly
series using monthly average data to 1973M1.

The third column reports the forecasts constructed using the BU approach. The forecasts

improve upon the average forecasts in terms of MSFE precision at short horizons, but not in terms

of directional accuracy. Moreover, the forecasts fail to outperform the end-of-month no-change

forecast at any horizon and are especially poor at longer horizons. In fact, at horizons beyond
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six months, the BU approach is worse than the forecasts computed with backcasted average data.

Although the BU approach is efficient at short horizons, the inability to backcast daily data suggests

that the approach fails to provide effective estimates of the long-run mean. This highlights a relative

disadvantage of the BU approach in practice.

The PEPSI forecasts provide the largest MSFE gains at short horizons, and the gains from the

constant weight “PEPSI” exhibits significance at the 10 percent level. The approaches utilizing

the backcasted end of period data perform exceptionally well at longer horizons. This further

corroborates the usefulness of the disaggregated approaches utilizing end-of-period data for both

short- and long-horizon forecasts.9

Table 7. Real-Time VAR Forecasts of the Real Price of Copper

Method Aggregate PEPSI PEPSI(est) EoP
Data Average EoM EoM EoM 

Horizon
1 1.65 (0.999) 0.94 (0.221) 0.85 (0.073) 1.04 (0.599)
3 1.06 (0.609) 0.93 (0.341) 0.78 (0.102) 0.98 (0.475)
6 0.96 (0.434) 0.91 (0.345) 0.73 (0.119) 0.93 (0.393)

12 0.95 (0.399) 0.92 (0.343) 0.85 (0.177) 0.95 (0.412)
24 0.84 (0.149) 0.84 (0.123) 1.07 (0.656) 0.82 (0.103)

1 0.56 (0.028) 0.54 (0.090) 0.57 (0.016) 0.54 (0.090)
3 0.56 (0.013) 0.61 (0.001) 0.61 (0.000) 0.61 (0.001)
6 0.63 (0.000) 0.63 (0.000) 0.67 (0.000) 0.63 (0.000)

12 0.67 (0.000) 0.70 (0.000) 0.71 (0.000) 0.70 (0.000)
24 0.70 (0.000) 0.71 (0.000) 0.63 (0.009) 0.71 (0.000)

MSFE Ratio

Success Ratio

Note: Real-time, out-of-sample forecasts of the monthly average real price of copper in levels, 2000M1–2021M1.
End-of-period (EoP) uses end-of-period forecasts as the forecast of the average. AR(12) selected using AIC. Monthly
value begin in 1973 and are backcast. Forecast criteria expressed relative to the end-of-month no-change forecast,
with p-values reported in parentheses. Bold values indicate forecast gains relative to the no-change forecast for the
MSFE ratio and gain in directional accuracy for the success ratio. “Backcast” data refers to backcasting monthly
series using monthly average data to 1973M1.

Table 7 reports the VAR forecasts which use the OCED CLI and estimated at the monthly

frequency. The results again show that the model-based forecasts constructed using period average

data results in poor forecast performance. However, the monthly average forecasts improve sub-

stantially merely by replacing the monthly average with the end-of-month copper data in the VAR.

Like for the ARIMA models, both the PEPSI forecasts with the constant and estimated weights

continue to improve forecast accuracy. The PEPSI(est) forecasts show significant improvements in

both MSFE precision and direction accuracy at the one-step ahead at the 10 and 5 percent level,

9When the series are not backcasted, shown in appendix Table A3.3, all methods fail to show gains at longer
horizons.
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respectively.

The VAR example shows that it is easy to implement PEPS even in situations where altering

the frequency of the model is not viable, which is often the case for central bank projection models

or other low-frequency macroeconomic frameworks. By replacing the period average observations

with the end-of-period observations and ex-post adjusting the forecasts to be equal to the period

average, a forecaster can substantially improve the forecast accuracy of period-average observations.

4.5 Robustness

We find that any averaging of the end-of-month observations, such as two-day or weekly averages,

systemically reduces accuracy of both the no-change forecasts and model-based forecasts that are

estimated with the PEPS approach, see appendix A3.2. This pattern supports the idea that the last

available information contained in the closing price reflects all available information about future

levels.

The results presented in this paper are remarkably robust to alternative modeling choices. For

example, similar results are obtained when model lags are selected using the Schwarz (1978) infor-

mation criterion, as done by Rossana and Seater (1995). Moreover, the results remain qualitatively

and, for the most part, quantitatively unchanged, when ARMA(1,1) models are used instead of the

AIC criterion, see appendix A3.4.

Model-based forecasts using disaggregated approaches are also superior for forecasts of quarterly

average prices. This is consistent with the simulation evidence in section 3, showing that aggregation

over more observations increases the information loss (see also Amemiya and Wu, 1972; Wei, 1978).

Finally, the results hold for alternative assumptions for CPI. For example, using ex-post revised

data instead of real-time data does not affect the conclusions. This robustness is expected, as

fluctuations in the CPI deflator are generally small compared to fluctuations in prices and tend to

have minimal impact on forecasts.

5 Conclusion

We have proposed the method of period-end-point sampling (PEPS) to forecast persistent tempo-

rally aggregated data. It consists of using end-of-period observations to construct point forecasts

that are equal to the period average forecasts. We have shown that PEPS avoids the loss of infor-

mation that is induced by aggregation and generally yields superior accuracy to forecasts computed
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from aggregated data. The gains are sizeable at short horizons and have practical advantages that

improve long-run forecast accuracy. The forecast gains rival the BU approach.

A major advantage of PEPS is that it allows the forecast model to maintain the same frequency

as the target variable. We have shown that it is straightforward to combine higher-frequency

information with information from lower-frequency variables without modifying the estimation

frequency. Forecasters who want to maintain models at a lower frequency, which is often the

case for central bank projections and other macroeconomic forecasts, should no longer exclude

themselves from achieving substantial gains in forecast accuracy using disaggregated techniques.
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Online Appendix (Not intended for publication)

A1 Detailed Proofs

A1.1 Proof of IVT in Theorem 1

Intermediate Value Theorem for Forecasts: If ŷT+k,i is a continuous function on the interval

i ∈ [1, n], and ˆ̄yT+k is any number between ŷT+k,1 and ŷT+k,n inclusive, then there exists at least

one i∗ in the interval [1, n] such that ŷT+k,i∗ = ˆ̄yT+k.

Proof. Without loss of generality, assume ŷT+k,1 < ˆ̄yT+k < ŷT+k,n. Consider the set S = {x ∈

[1, n] : ŷT+k,x < ˆ̄yT+k}. Since ŷT+k,1 < ˆ̄yT+k, 1 ∈ S, making S non-empty. Also, S is bounded

above by n, so by the completeness property of the real numbers, S has a least upper bound, say

i∗, where i∗ ∈ [1, n].

To show ŷT+k,i∗ = ˆ̄yT+k, we proceed by contradiction:

• If ŷT+k,i∗ < ˆ̄yT+k, then by the continuity of ŷT+k,i, there exists a δ > 0 such that for all x in

(i∗, i∗ + δ), ŷT+k,x < ˆ̄yT+k. This contradicts i
∗ being the least upper bound of S.

• If ŷT+k,i∗ > ˆ̄yT+k, then there exists a δ > 0 such that for all x in (i∗ − δ, i∗), ŷT+k,x > ˆ̄yT+k.

This implies there exists some x ∈ S with x > i∗, contradicting i∗ being the least upper

bound of S.

The only remaining possibility is ŷT+k,i∗ = ˆ̄yT+k

A1.2 Proof of Corollary 1

Proof. Assume without loss of generality that ŷT+k,0 and ŷT+k,n are not both the maximum or

both the minimum of ŷT+k,i. By assumption ŷT+k,0 ≤ ˆ̄yT+k ≤ ŷT+k,n. There exists at least one

maximum value ẏT+k,imax and one minimum value ẏT+k,imin of the linear piece wise interpolation,

and by definition ẏT+k,imin ≤ ˆ̄yT+k ≤ ẏT+k,imax . By the Intermediate Value Theorem (IVT) if

ẏT+k,i is a continuous function on an interval i ∈ [0, n], then there exists at least one point i#

between ŷT+k,0 and ŷT+k,n for which ẏT+k,i# = ˆ̄yT+k.
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A1.3 Proof of Proposition 1

Proof. Under bottom-up, ET,n (yT+k,i) = ρ(k−1)n+iyT,n. Suppose k = 1, then

n∑
i=1

[yT+1,i −ET,n (yT+1,i)] = yT+1,1 −ET,n (yT+1,1) + yT+1,2 −ET,n (yT+1,2)

+ · · ·+ yT+1,n −ET,n (yT+1,n) .

(30)

Note that

yT+1,1 −ET,n (yT+1,1) = ρyT,n + εT+1,1 + ρyT,n = εT+1,1

yT+1,2 −ET,n (yT+1,2) = ρyT+1,1 + εT+1,2 + ρ2yT,n = ρεT+1,1 + εT+1,2 =
2∑

j=1

ρ2−iεT+1,i

... =
...

yT+1,n −ET,n (yT+1,n) =
n∑

j=1

ρn−iεT+1,i .

Therefore,

n∑
i=1

[yT+1,i −ET,n (yT+1,i)] = εT+1,1 +
2∑

j=1

ρ2−iεT+1,i + · · ·+
n∑

j=1

ρn−iεT+1,i =
n∑

i=1

i∑
j=1

ρi−jεT+1,j .

Hence, the relation in Claim 1 holds. Assume the relation in Claim 1 holds for k − 1, then

n∑
i=1

[
yT+(k−1),i −ET,n

(
yT+(k−1),i

)]
= yT+(k−1),1 −ET,n

(
yT+(k−1),1

)
+ yT+(k−1),2 −ET,n

(
yT+(k−1),2

)
+ · · ·+ yT+(k−1),n −ET,n

(
yT+(k−1),n

)
(31)

=

n∑
i=1

i∑
j=1

(k−1)∑
l=1

ρ((k−1)−l)n−j+iεT+l,j

In particular, we have that

yT+(k−1),n −ET,n

(
yT+(k−1),n

)
= ρ(k−1)nyT,n +

n∑
j=1

k−1∑
l=1

ρ(k−l)n−jεT+l,j − ρ(k−1)nyT,n . (32)
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We show now that the relation holds for any k. Consider

yT+k,1 −ET,n (yT+k,1) = ρyT+k−1,n + εT+k,1 − ρ(k−1)n+1yT,n

= ρ

ρ(k−1)nyT,n +
n∑

j=1

k−1∑
l=1

ρ(k−l)n−jεT+l,j

+ εT+k,1 − ρ(k−1)n+1yT,n

=

n∑
j=1

k−1∑
l=1

ρ(k−l)n−j+1εT+l,j + εT+k,1

yT+k,2 −ET,n (yT+k,2) = ρyT+k,1 + εT+k,2 − ρ(k−1)n+2yT,n

= ρ2yT+k−1,n + ρεT+k,1 + εT+k,2 − ρ(k−1)n+2yT,n

= ρ2

ρ(k−1)nyT,n +

n∑
j=1

k−1∑
l=1

ρ(k−l)n−jεT+l,j

+ ρεT+k,1 + εT+k,2 − ρ(k−1)n+2yT,n

=
n∑

j=1

k−1∑
l=1

ρ(k−l)n−j+2εT+l,j +
2∑

j=1

ρ2−jεT+k,j

... =
...

yT+k,n −ET,n (yT+k,n) =

n∑
j=1

k−1∑
l=1

ρ(k−l)n−j+nεT+l,j +

n∑
j=1

ρn−jεT+k,j

=

n∑
j=1

k−1∑
l=1

ρ(k−l)n−j+nεT+l,j +

n∑
j=1

ρn−jεT+k,j

=

n∑
j=1

k−1∑
l=1

ρ(k−l)n−j+nεT+l,j +

n∑
j=1

ρn−jεT+k,j ,

using (32) in the first equality above. Hence, we have that

n∑
i=1

[yT+k,i −ET,n (yT+k,i)] =

n∑
i=1

 i∑
j=1

k−1∑
l=1

ρ(k−l)n−j+1εT+l,j + εT+k,1

+
i∑

j=1

k−1∑
l=1

ρ(k−l)n−j+2εT+l,j +

2∑
j=1

ρ2−jεT+k,j

+ · · ·

+

i∑
j=1

k−1∑
l=1

ρ(k−l)n−j+nεT+l,j +

n∑
j=1

ρn−jεT+k,j


=

n∑
i=1

i∑
j=1

k∑
l=1

ρ(k−l)n−j+iεT+l,j .

(33)
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A1.4 Proof of Proposition 2

Proof. First, for k = 1, we have

n∑
i=1

[yT+1,i −ET,n [yT+1,n]] = yT+1,1 −ET,n [yT+1,n] + yT+1,2 −ET,n [yT+1,n]

+ · · ·+ yT+1,n −ET,n [yT+1,n]

where

yT+1,1 −ET,n [yT+1,n] = ρyT,n + ϵT+1,1 − ρnyT,n = ρyT,n(1− ρn−1) + ϵT+1,1

yT+1,2 −ET,n [yT+1,n] = ρyT+1,1 + ϵT+1,2 − ρnyT,n = ρ2yT,n + ρϵT+1,1 + ϵT+1,2 − ρnyT,n

= ρ2yT,n(1− ρn−2) +
2∑

i=1

ρ2−iϵT+1,i

... =
...

yT+1,n −ET,n [yT+1,n] =
n∑

i=1

ρn−iϵT+1,i .

Therefore,

n∑
i=1

[yT+1,i −ET,n [yT+1,n]] = ρyT,n(1− ρn−1) + ϵT+1,1

+ ρ2yT,n(1− ρn−2) +

2∑
i=1

ρ2−iϵT+1,i

+ · · ·

+

n∑
i=1

ρn−iϵT+1,i

=
n−1∑
i=1

ρiyT,n(1− ρn−i) +
n∑

i=1

i∑
j=1

ρi−jϵT+1,j .
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The relation in Claim 2 holds. Assume it holds for k − 1. As in Claim 1, we have that

yT+(k−1),n −ET,n

[
yT+(k−1),n

]
= yT,n

(
ρ(k−1−1)n+n − ρ(k−1)n

)
+

n∑
j=1

k−1∑
l=1

ρ(k−l)n−jεT+l,j (34)

We show now that the relation holds for any k. Consider

yT+k,1 −ET,n [yT+k,n] = ρyT+k−1,n + εT+k,1 − ρknyT,n

= yT,n

(
ρ(k−1−1)n+n+1 − ρ(k−1)n+1

)
+

n∑
j=1

k−1∑
l=1

ρ(k−l)n−j+1εT+l,j + εT+k,1

yT+k,2 −ET,n [yT+k,n] = yT,n

(
ρ(k−1−1)n+n+2 − ρ(k−1)n+2

)
+

n∑
j=1

k−1∑
l=1

ρ(k−l)n−j+2εT+l,j +
2∑

j=1

ρ2−jεT+k,j

... =
...

yT+1,n −ET,n [yT+1,n] = yT,n

(
ρ(k−1−1)n+n+n − ρ(k−1)n+n

)
+

n∑
j=1

k−1∑
l=1

ρ(k−l)n−j+nεT+l,j +
n∑

j=1

ρn−jεT+k,j

= yT,n

(
ρ(k−1)n+n − ρkn

)
+

n∑
j=1

k−1∑
l=1

ρ(k−l)n−j+nεT+l,j +
n∑

j=1

ρn−jεT+k,j

using (34) in the first equality above. Therefore,

n∑
i=1

[yT+k,i −ET,n (yT+k,n)] =

n∑
i=1

yT,n

(
ρ(k−1)n+i − ρkn

)
+

n∑
i=1

i∑
j=1

k∑
l=1

ρ(k−l)n−j+iεT+l,j .
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A2 Data Appendix

This appendix describes the construction of the data series used in the empirical exercises.

Copper spot prices Daily closing spot prices of grade A copper at the London Metal Exchange

were obtained from Bloomberg (LMCADY). Monthly average data used for backcasting is obtained

from the World Bank Pink sheets. https://www.worldbank.org/en/research/commodity-markets

Interest rate Daily data on interest rates were obtained from Board of Governors of the

Federal Reserve System. The long-term rate is the Market Yield on U.S. Treasury Securities at 10-

Year Constant Maturity, Quoted on an Investment Basis (DGS10), retrieved from FRED, Federal

Reserve Bank of St. Louis.

OECD CLI The Composite Leading Indicator (CLI) for the G20 countries is provided by the

Organisation for Economic Co-operation and Development, https://doi.org/10.1787/4a174487-en.

The CLI provides early signals of turning points in business cycles.

Consumer price index Real-time vintages of the seasonally adjusted U.S. consumer price

index are obtained from the real-time database of the Philadelphia Federal Reserve.

Nowcasts of CPI for real forecasts Missing real-time observations for the CPIs are now-

casted using the average historical growth rate from 1973M1. All vintages of U.S. CPI are available

and are observed with a one-month publication delay.
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A3 Robustness Results

A3.1 Comparison of No-Change Forecasts

Table A1. End-of-Month Versus Monthly Average No-change Forecasts

Series
Simulated 
Ran. Walk

10 Year 
Bonds

Copper

Horizon
1 0.54 0.56 (0.000) 0.55 (0.000)
3 0.89 0.84 (0.000) 0.89 (0.007)
6 0.95 0.92 (0.000) 0.96 (0.027)

12 0.97 0.95 (0.000) 0.99 (0.321)

1 0.74 0.75 (0.000) 0.71 (0.000)
3 0.61 0.65 (0.000) 0.60 (0.000)
6 0.58 0.66 (0.000) 0.55 (0.020)

12 0.55 0.64 (0.000) 0.56 (0.004)

MSFE Ratio

 Success Ratio

Note: Real-time, out-of-sample forecasts in levels, 1992M1–2021M1. End-of-month no-change forecasts relative to
the monthly average no-change forecast, with p-values reported in parentheses.

A3.2 Alternative Averaging

Table A2. Alternative End-of-Month No-changes Versus Monthly Average No-change Forecasts

Series
Simulated 
Ran. Walk

10 Year 
Bonds

Copper

Average
EoM 0.54 0.56 (0.000) 0.55 (0.000)

2 days 0.55 0.58 (0.000) 0.56 (0.000)
1 week 0.62 0.65 (0.000) 0.62 (0.000)
2 weeks 0.74 0.76 (0.000) 0.73 (0.000)

EoM 0.74 0.75 (0.000) 0.71 (0.000)
2 days 0.73 0.73 (0.000) 0.73 (0.000)
1 week 0.71 0.72 (0.000) 0.72 (0.000)
2 weeks 0.68 0.67 (0.000) 0.68 (0.000)

MSFE Ratio

 Success Ratio

Note: Real-time, out-of-sample forecasts in levels, 1992M1–2021M1. End-of-month no-change forecasts relative to
the monthly average no-change forecast, with p-values reported in parentheses.
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A3.3 Real Price of Copper Backcasts

Table A3. Real-Time Model-Based Forecasts of the Real Price of Copper, no Monthly Backcast

Method Aggregate Bottom-up PEPSI PEPSI(est) EoP 
Data Average Daily EoM EoM  EoM 

Horizon
1 1.76 (0.998) 0.99 (0.299) 0.98 (0.307) 1.01 (0.636) 1.05 (0.731)
3 1.14 (0.960) 1.03 (0.872) 1.01 (0.603) 1.07 (0.852) 1.06 (0.755)
6 1.20 (0.980) 1.06 (0.906) 1.14 (0.959) 1.16 (0.976) 1.18 (0.968)

12 1.26 (0.990) 1.14 (0.958) 1.25 (0.984) 1.21 (0.969) 1.29 (0.985)
24 1.47 (1.000) 1.29 (0.998) 1.51 (1.000) 1.19 (0.926) 1.55 (1.000)

1 0.51 (0.352) 0.54 (0.081) 0.52 (0.191) 0.50 (0.439) 0.52 (0.191)
3 0.48 (0.759) 0.50 (0.726) 0.52 (0.305) 0.48 (0.775) 0.54 (0.241)
6 0.45 (0.980) 0.50 (0.720) 0.47 (0.880) 0.45 (0.944) 0.47 (0.923)

12 0.44 (0.893) 0.42 (0.977) 0.41 (1.000) 0.46 (0.853) 0.41 (1.000)
24 0.38 (1.000) 0.38 (1.000) 0.41 (1.000) 0.45 (0.942) 0.41 (1.000)

Success Ratio

MSFE Ratio

Note: Real-time, out-of-sample forecasts of the monthly average real price of copper in levels, 2000M1–2021M1.
End-of-period (EoP) uses end-of-period forecasts as the forecast of the average. AR(12) selected using AIC. Monthly
value begin in 1986 and are not backcast. Forecast criteria expressed relative to the end-of-month no-change forecast,
with p-values reported in parentheses. Bold values indicate forecast gains relative to the no-change forecast for the
MSFE ratio and gain in directional accuracy for the success ratio. “Backcast” data refers to backcasting monthly
series using monthly average data to 1973M1.
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A3.4 Alternative Parameterizations

Table A4. Real-Time ARMA(1,1) Forecasts of the Real Price of Copper

Method Aggregate Bottom-up PEPSI PEPSI(est) EoP 
Data Average Daily EoM EoM EoM 

Horizon
1 1.66 (1.000) 1.01 (0.919) 0.96 (0.084) 0.98 (0.356) 0.96 (0.248)
3 1.06 (0.862) 1.03 (0.896) 0.96 (0.156) 1.00 (0.451) 0.96 (0.218)
6 0.98 (0.408) 1.06 (0.908) 0.94 (0.197) 1.02 (0.673) 0.94 (0.234)

12 0.93 (0.249) 1.13 (0.958) 0.91 (0.189) 1.01 (0.566) 0.92 (0.215)
24 0.85 (0.025) 1.29 (0.998) 0.84 (0.016) 0.88 (0.015) 0.84 (0.019)

1 0.52 (0.249) 0.47 (0.837) 0.47 (0.842) 0.47 (0.842) 0.47 (0.842)
3 0.52 (0.213) 0.49 (0.755) 0.54 (0.141) 0.52 (0.213) 0.54 (0.100)
6 0.55 (0.089) 0.49 (0.819) 0.55 (0.083) 0.54 (0.021) 0.55 (0.072)

12 0.61 (0.031) 0.42 (0.985) 0.64 (0.008) 0.56 (0.099) 0.64 (0.006)
24 0.66 (0.004) 0.38 (1.000) 0.68 (0.001) 0.62 (0.000) 0.68 (0.001)

MSFE Ratio

Success Ratio

Note: Real-time, out-of-sample forecasts of the monthly average real price of copper in levels, 2000M1–2021M1, using
an ARMA(1,1). End-of-period (EoP) uses end-of-period forecasts as the forecast of the average. Monthly value begin
in 1973 and are backcast. Forecast criteria expressed relative to the end-of-month no-change forecast, with p-values
reported in parentheses. Bold values indicate forecast gains relative to the no-change forecast for the MSFE ratio
and gain in directional accuracy for the success ratio. “Backcast” data refers to backcasting monthly series using
monthly average data to 1973M1.

Table A5. Real-Time ARMA(1,1) Forecasts of the Nominal 10-Year Treasury Bonds

Method Aggregate Bottom-up PEPSI PEPSI(est) EoP 
Data Average Daily EoM EoM EoM 

Horizon
1 1.77 (1.000) 1.01 (0.886) 1.00 (0.546) 0.99 (0.295) 1.03 (0.840)
3 1.08 (0.986) 1.00 (0.716) 1.01 (0.854) 1.05 (0.900) 1.01 (0.861)
6 1.04 (0.958) 1.00 (0.427) 1.00 (0.619) 1.17 (0.990) 1.01 (0.610)

12 1.03 (0.872) 0.98 (0.205) 0.98 (0.252) 1.43 (0.999) 0.98 (0.259)
24 0.98 (0.293) 0.96 (0.178) 0.96 (0.192) 1.06 (0.865) 0.96 (0.198)

1 0.48 (0.650) 0.44 (0.997) 0.52 (0.115) 0.52 (0.115) 0.52 (0.115)
3 0.53 (0.082) 0.49 (1.000) 0.47 (0.816) 0.47 (0.865) 0.48 (0.745)
6 0.50 (0.552) 0.53 (1.000) 0.53 (0.577) 0.46 (1.000) 0.53 (0.608)

12 0.51 (0.841) 0.63 (1.000) 0.61 (0.984) 0.37 (1.000) 0.61 (0.984)
24 0.50 (0.993) 0.58 (1.000) 0.57 (1.000) 0.49 (0.565) 0.57 (1.000)

Success Ratio

MSFE Ratio

Note: Real-time, out-of-sample forecasts of the nominal monthly average 10-year Treasury bonds in levels, 2000M1–
2021M1, using an ARMA(1,1). End-of-period (EoP) uses end-of-period forecasts as the forecast of the average.
Forecast criteria expressed relative to the end-of-month no-change forecast, with p-values reported in parentheses.
Bold values indicate forecast gains relative to the no-change forecast for the MSFE ratio and gain in directional
accuracy for the success ratio.
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